The Besicovitch-Stability of Noisy Tilings is Undecidable

Léo Gayral 12/07/2021, AUTOMATA

IMT, Université Toulouse III Paul Sabatier

Crash Course on Noisy SFTs

Is the Robinson Tiling Stable ?

Undecidability Through the Simulation of Turing Machines

Crash Course on Noisy SFTs

• Grid \mathbb{Z}^2 .

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	×	0	×	0	\times	0	×	0
\times	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
\times	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

• Grid \mathbb{Z}^2 .

• Alphabet
$$\mathcal{A} = \{\circ, \times\}$$
.

\times	0	×	0	×	0	×	0	×	0	×	0	×
×	0	×	0	×	0	×	0	×	0	×	0	×
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	\times	0	×	0
\times	0	×	0	\times	0	\times	0	×	0	×	0	\times
\times	0	×	0	×	0	×	0	×	0	×	0	\times
\times	0	×	0	×	0	×	0	×	0	×	0	\times
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :

×	×
---	---

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	×	0	×	0	\times	0	×	0	\times	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
\times	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0

- Grid \mathbb{Z}^2 .
- Alphabet $\mathcal{A} = \{\circ, \times\}.$
- Forbidden patterns \mathcal{F} :

The SFT is the space $\Omega_{\mathcal{F}} \subset \mathcal{A}^{\mathbb{Z}^d}$ of such configurations.

Denote $\mathcal{M}_{\mathcal{F}}$ the σ -invariant measures on $\Omega_{\mathcal{F}}$.

• Inject
$$\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$$

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	\times	0	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
\times	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
\times	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$

\times	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
\times	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	×	0	\times	0	×	0	\times	0
\times	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	\times	0	0	×	0	×
\times	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	\times	×	×	×	×	0	\times	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.

×	0	×	0	×	0	×	0	×	0	×	0	\times
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	\times	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	\times	0	×	0	0	×	0	×
\times	\times	×	0	×	0	0	×	×	0	0	0	\times
0	\times	0	×	0	\times	×	×	×	×	0	\times	0

- Inject $\mathcal{A} \hookrightarrow \widetilde{\mathcal{A}} = \mathcal{A} \times \{0, 1\}.$
- Identify $\mathcal{F} \cong \widetilde{\mathcal{F}} = \mathcal{F} \times \{0\}.$
- Denote $\mathcal{M}^{\mathcal{B}}_{\mathcal{F}}(\varepsilon) \subset \mathcal{M}_{\widetilde{\mathcal{F}}}$ the measures with $\mathcal{B}(\varepsilon)^{\otimes \mathbb{Z}^d}$ Bernoulli noise.
- The set $\widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)$ is weak-* closed, and $\bigcap_{\varepsilon>0} \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon) = \mathcal{M}_{\mathcal{F}}.$

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
×	\times	×	0	\times	0	0	×	×	0	0	0	\times
0	\times	0	×	0	×	×	×	×	×	0	\times	0

Reminder (Weak-* Convergence)

We say that $\mu_n \xrightarrow{*} \mu$ when $\mu_n([w]) \rightarrow \mu([w])$ for any finite pattern w.

Χ

×	0	×	0	×	0	×	0	×	0	×	0	×
0	0	×	0	0	×	×	0	×	0	×	0	×
×	0	0	0	0	0	×	×	0	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	0	0	0	0	0	0	×
0	0	×	×	×	×	0	×	0	0	×	0	×
×	×	×	0	×	0	0	×	×	0	0	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,) = \frac{1}{13\times 8}$$

×	0	\times	0	\times	0	\times	0	×	0	×	0	×
0	×	0	×	0	×	0	×	0	×	0	×	0
×	0	\times	0	\times	0	\times	0	×	0	×	0	×
0	\times	0	\times	0	×	0	\times	0	\times	0	\times	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	\times	0	×	0	\times	0	\times	0	\times	0
×	0	×	0	×	0	×	0	×	0	×	0	×
0	\times	0	\times	0	×	0	\times	0	\times	0	×	0

у

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{1}{13\times 8}$$

						xyy						
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	×	×	×	×
×	0	×	0	×	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	×	0	×	0	×
0	×	×	×	×	×	0	×	0	×	Ø	X	Ø
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

.

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

X Y												
×	0	×	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	×	×	×	×
×	0	Ø	0	×	0	×	×	×	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	×	0	×	0	×
0	×	Ø	×	×	×	0	×	0	×	×	×	×
×	×	\times	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

Hamming-Besicovitch pseudo-distance:

$$d_H = \limsup_{n \to \infty} d_{n \times n}$$

X Y												
×	0	\times	0	×	0	×	0	×	0	×	0	×
0	×	×	×	0	×	×	×	×	X	×	×	×
×	0	Ø	0	X	0	×	Ø	Ø	0	×	0	×
0	×	×	×	0	×	0	×	0	×	0	×	0
×	0	×	×	×	×	×	0	×	0	×	0	×
0	×	×	×	X	×	0	×	0	X	X	×	×
×	×	×	0	×	0	×	×	×	0	×	0	×
0	×	0	×	0	×	×	×	×	×	0	×	0

Finite Hamming distance:

$$d_{13\times 8}(x,y) = \frac{33}{13\times 8} \approx 0.3$$

Hamming-Besicovitch pseudo-distance:

$$d_H = \limsup_{n \to \infty} d_{n \times n}$$

Besicovitch distance on σ -invariant measures:

$$d_B(\mu, \nu) = \inf_{\lambda \text{ a coupling}} \int d_H(x, y) \mathrm{d}\lambda(x, y)$$

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

The SFT $\Omega_{\mathcal{F}}$ is *f*-stable for d_B on Bernoulli noises if:

$$\forall \varepsilon > 0, \sup_{\lambda \in \widetilde{\mathcal{M}}_{\mathcal{F}}^{\mathcal{B}}(\varepsilon)} d_{\mathcal{B}}(\pi_{1}^{*}(\lambda), \mathcal{M}_{\mathcal{F}}) \leq f(\varepsilon).$$

What kind of (in)stability results can we expect from typical SFTs ?

Is the Robinson Tiling Stable ?

The Robinson Tiling

An Enhanced Robinson Tiling

Theorem ([Gayral and Sablik, 2021, Proposition 7.8 and Theorem 7.9])

For any $\varepsilon > 0$, any scale N, and any measure $\mu = \pi_1^*(\lambda)$ with $\lambda \in \widetilde{\mathcal{M}_{\mathcal{F}}^{\mathcal{B}}}(\varepsilon)$:

$$d_B(\mu, \mathcal{M}_F) \leq 96 \left(2^{N+2}+1\right)^2 \varepsilon + \frac{1}{2^{N-1}}.$$

Hence, the SFT is f-stable with $f(\varepsilon) = 8\sqrt[3]{6\varepsilon}$.

A Two-Coloured Robinson Tiling

Proposition ([Gayral, 2021, Proposition 1])

The SFT Ω_{RB} is unstable.

More precisely, for any $\varepsilon > 0$, we have $\mu \in \mathcal{M}_{RB}^{\mathcal{B}}(\varepsilon)$ such that $d_B(\mu, \mathcal{M}_{RB}) \geq \frac{1}{8}$.

Undecidability Through the Simulation of Turing Machines

Turing Machine Space-Time Diagrams as Tilings

Consider a Turing machine $(Q, \Gamma, I, F, \delta)$ and define the following Wang tiles:

- For any letter $a \in \Gamma$ and any state $q \in Q$:
- For any letter $a \in \Gamma$ and initial state $q \in I$:
- For any letter $a \in \Gamma$ and final state $q \in F$:
- For any transition $\delta(a,q) = (b,q',L)$:
- For any transition $\delta(a,q) = (b,q',R)$:

Embedding Space-Time Diagrams into Robinson Tilings

A Four-Coloured Enhanced Robinson Tiling

Transition from the Red-Black to the Blue-Green Phase

16/20

Theorem ([Gayral, 2021, Theorem 1])

Let us denote by $\Omega_{\mathcal{T}}$ the SFT that embeds the Turing machine T into a variant of the Robinson tiling.

Then Ω_T is stable (for d_B on the class \mathcal{B}) if and only if the Turing machine T does not end on the empty input. In the stable case, Ω_T is polynomially stable.

Corollary ([Gayral, 2021, Corollary 1])

The problem of deciding whether the SFT Ω_F is stable or not given the set of forbidden patterns F is undecidable.

The Stable Case

In a 2*N*-macro-tile, only $O(12^N)$ tiles out of 16^N are ignored.

The Stable Case

In a 2*N*-macro-tile, only $O(12^N)$ tiles out of 16^N are ignored.

We can do the same Blue-Green colour flip as in our Red-Black unstable example.

If the Turing machine stops in 2N-macro-tiles, we have a $\Omega\left(\frac{1}{16^N}\right)$ density of differences between Blue and Green.

Are there any questions?

Gayral, L. (2021).

The Besicovitch-stability of noisy tilings is undecidable. https://hal.archives-ouvertes.fr/hal-03233596.

 Gayral, L. and Sablik, M. (2021).
On the Besicovitch-stability of noisy random tilings. https://arxiv.org/abs/2104.09885.