
Rice’s theorem for generic limit sets of cellular
automata

Martin Delacourt
LIFO, Université d’Orléans

AUTOMATA 2021
12.07.2021

Context

< > < > < < > < > > < > > < < < < > > > < > > > < > < > <
< < > > > < < < < > > > > <

< > > < < < > > > > <
> < > < < > > > > <
> > < > < < > > > > <
> > > < < > > >
> > > < > > >
> > > > < > > >
> > > > > < > > >
> > > > > > < > > >

I Only 1D-CA here.
I The limit set is the set of all asymptotic behaviours.
I The generic limit set (Milnor 1985) is a topological approach

of an asymptotic set of typical configurations .

Definitions and first results

Cellular Automata (CA)

A one-dimensional CA F is given by:
I a finite alphabet Σ

I a radius r ∈ N
I a local rule δ : Σ2r+1 → Σ

Starting from an initial configuration c ∈ ΣZ, the global rule
associated to δ can be applied successively to the images Fn(c) for
n ∈ N. We represent the orbit as the pile of configurations (time
going up) called the space-time diagram.

Topology

We define a distance on the set ΣZ of all configurations by :

∀x , y ∈ ΣZ, d(x , y) = 2−min{|i |:xi 6=yi}

0 0 0

0 0

0

0

0

01 1

1 1

1

1

1

1

1

1

1 1

1 1

1

0
|i| = 2

x

y

It is the Cantor topology and the balls are called cylinders. For a
word u ∈ Σ∗ and a position i ∈ Z, define:

[u]i = {c ∈ ΣZ : c[i ..i+|u|−1] = u}
We will often write [u] for [u]0.
ΣZ is compact and the cylinders form a basis of clopen sets.

Shift and subshifts

Define the shift σ : ΣZ → ΣZ with σ(c)i = ci+1 for any
configuration c and position i .

The shift σ is a CA and it plays a particular role:

Theorem [Hedlund 1969]
The CA are the continuous applications that commute with σ.

We are especially interested in the set of closed and σ-invariant
subsets of ΣZ, they are called subshifts and can be equivalently
defined by a set of forbidden patterns F :

XF = {c ∈ ΣZ : ∀i ∈ Z,∀u ∈ F , ci ..i+|u|−1 6= u}

Shift and subshifts

Define the shift σ : ΣZ → ΣZ with σ(c)i = ci+1 for any
configuration c and position i .

The shift σ is a CA and it plays a particular role:

Theorem [Hedlund 1969]
The CA are the continuous applications that commute with σ.

We are especially interested in the set of closed and σ-invariant
subsets of ΣZ, they are called subshifts and can be equivalently
defined by a set of forbidden patterns F :

XF = {c ∈ ΣZ : ∀i ∈ Z,∀u ∈ F , ci ..i+|u|−1 6= u}

Shift and subshifts

Define the shift σ : ΣZ → ΣZ with σ(c)i = ci+1 for any
configuration c and position i .

The shift σ is a CA and it plays a particular role:

Theorem [Hedlund 1969]
The CA are the continuous applications that commute with σ.

We are especially interested in the set of closed and σ-invariant
subsets of ΣZ, they are called subshifts and can be equivalently
defined by a set of forbidden patterns F :

XF = {c ∈ ΣZ : ∀i ∈ Z,∀u ∈ F , ci ..i+|u|−1 6= u}

The limit set

The limit set is the set of configurations that have antecedents
arbitrarily far back in time.

Ω(F) =
⋂
n∈N

Fn(ΣZ)

It is a subshift.

Ω(glid) contains every configuration where < k > does not
appear:
I

I . . . < < < < . . . , . . . > > > > . . .

I . . . > > < < . . .

The limit set
The limit set is the set of configurations that have antecedents
arbitrarily far back in time.

Ω(F) =
⋂
n∈N

Fn(ΣZ)

It is a subshift.

Ω(min) contains every configuration where k does not
appear:
I ,
I ,
I

Ω(glid) contains every configuration where < k > does not
appear:
I
I . . . < < < < . . . , . . . > > > > . . .
I . . . > > < < . . .

The limit set
The limit set is the set of configurations that have antecedents
arbitrarily far back in time.

Ω(F) =
⋂
n∈N

Fn(ΣZ)

It is a subshift.

Ω(min) contains every configuration where k does not
appear:
I ,
I ,
I

Ω(glid) contains every configuration where < k > does not
appear:
I
I . . . < < < < . . . , . . . > > > > . . .
I . . . > > < < . . .

The limit set
The limit set is the set of configurations that have antecedents
arbitrarily far back in time.

Ω(F) =
⋂
n∈N

Fn(ΣZ)

It is a subshift.

< > < > < < > < > > < > > < < < < > > > < > > > < > < > <
< < > > > < < < < > > > > <

< > > < < < > > > > <
> < > < < > > > > <
> > < > < < > > > > <
> > > < < > > >
> > > < > > >
> > > > < > > >
> > > > > < > > >
> > > > > > < > > >

Ω(glid) contains every configuration where < k > does not
appear:
I

I . . . < < < < . . . , . . . > > > > . . .

I . . . > > < < . . .

The limit set
The limit set is the set of configurations that have antecedents
arbitrarily far back in time.

Ω(F) =
⋂
n∈N

Fn(ΣZ)

It is a subshift.

< > < > < < > < > > < > > < < < < > > > < > > > < > < > <
< < > > > < < < < > > > > <

< > > < < < > > > > <
> < > < < > > > > <
> > < > < < > > > > <
> > > < < > > >
> > > < > > >
> > > > < > > >
> > > > > < > > >
> > > > > > < > > >

Ω(glid) contains every configuration where < k > does not
appear:
I

I . . . < < < < . . . , . . . > > > > . . .

I . . . > > < < . . .

The generic-limit set

The generic limit set is a topological notion. It was introduced by
Milnor (1985) and most results come from Djenaoui and Guillon
(2018).

The realm of attraction
For any subset X ⊆ ΣZ, define ω(F)(X) as the set of limit points
of orbits of configurations in X :

c ∈ ω(F)(X)⇔ ∃c ′ ∈ X , lim inf
t→∞

d(Ft(c ′), c) = 0

For X ⊆ ΣZ, define the realm of attraction

D(X) = {c ∈ ΣZ : ω(F)(c) ⊆ X}

The generic-limit set

The generic limit set is a topological notion. It was introduced by
Milnor (1985) and most results come from Djenaoui and Guillon
(2018).

The realm of attraction
For any subset X ⊆ ΣZ, define ω(F)(X) as the set of limit points
of orbits of configurations in X :

c ∈ ω(F)(X)⇔ ∃c ′ ∈ X , lim inf
t→∞

d(Ft(c ′), c) = 0

For X ⊆ ΣZ, define the realm of attraction

D(X) = {c ∈ ΣZ : ω(F)(c) ⊆ X}

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.
I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.
I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.
I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.
I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.

I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.
I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.
I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.
I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.
I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.

I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set

Comeager set
A subset X ⊆ ΣZ is said to be comeager if it contains a countable
intersection of dense open sets. It implies in particular that X is
dense (Baire property).

The generic limit set
The generic limit set ω̃(F) of F is then defined as the intersection
of all closed subsets of ΣZ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :
I ω̃(F) is a subshift.
I ω̃(F) ⊆ Ω(F)

I Its realm is comeager, hence ω̃(F) is nonempty.
I ω̃(F) = ΣZ ⇔ F is surjective.

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

↑
0

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

v↑
i

↑
0

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

u v w↑
i

↑
0

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

u v w↑
i

↑
0

t0 s

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

u v w↑
i

↑
0

t0

t1 s

The generic-limit set, characterization

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020)
proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]
Let F be a CA on ΣZ. A word s ∈ Σ∗ belongs to L(ω̃(F)) if and
only if there exists a word v ∈ Σ∗ and i ∈ Z such that for all
u,w ∈ Σ∗, there exist infinitely many t ∈ N with
Ft([uvw]i−|u|) ∩ [s] 6= ∅. Such a word v is said to enable s.

u v w↑
i

↑
0

t0

t1

t2

...
s

The generic-limit set, examples

ω̃(min) contains only the uniform configuration:

.

I The empty word enables 0.
I There is no word that enables 1.

The generic-limit set, examples

< > < > < < > < > > < > > < < < < > > > < > > > < > < > <
< < > > > < < < < > > > > <

< > > < < < > > > > <
> < > < < > > > > <
> > < > < < > > > > <
> > > < < > > >
> > > < > > >
> > > > < > > >
> > > > > < > > >
> > > > > > < > > >

ω̃(glid) is equal to the limit set Ω(glid) (all the configurations
where < k > does not appear).

Comparisons with a measure-theoretical approach

azertµ-limitazert azert genericazert azert limitazert

Λµ(F) ω̃(F) Ω(F)

min { Z} { Z} X k

glid { Z} X
<

k
>

X
<

k
>

It is proved [Djenaoui-Guillon 2018] that

Λµ(F) ⊆ ω̃(F) ⊆ Ω(F)

Comparisons with a measure-theoretical approach

azertµ-limitazert azert genericazert azert limitazert

Λµ(F) ω̃(F) Ω(F)

min { Z} { Z} X k

glid { Z} X
<

k
>

X
<

k
>

It is proved [Djenaoui-Guillon 2018] that

Λµ(F) ⊆ ω̃(F) ⊆ Ω(F)

Already known

Finite sets:
I If the limit set is finite, it is a singleton [Culik-Pachl-Yu 1989].
I Generic limit sets can have any finite cardinal.

The maximal complexity of the language is:
I Π1-complete for the limit set [Culik-Pachl-Yu 1989].
I Σ3-complete for the generic limit set [Törmä 2020].

Already known

Finite sets:
I If the limit set is finite, it is a singleton [Culik-Pachl-Yu 1989].
I Generic limit sets can have any finite cardinal.

The maximal complexity of the language is:
I Π1-complete for the limit set [Culik-Pachl-Yu 1989].
I Σ3-complete for the generic limit set [Törmä 2020].

Rice’s theorem

Rice’s theorem

On Turing machines:

[Rice 1953]
Every property of languages of Turing machines is either trivial or
undecidable.

Concerning CA:

Rice’s theorem for limit sets of CA [Kari 1994]
Every property of limit sets of CA is either trivial or undecidable.

Rice’s theorem

On Turing machines:

[Rice 1953]
Every property of languages of Turing machines is either trivial or
undecidable.

Concerning CA:

Rice’s theorem for limit sets of CA [Kari 1994]
Every property of limit sets of CA is either trivial or undecidable.

Rice’s theorem for generic limit sets of CA [Delacourt 2021]

Rice’s theorem for generic limit sets of CA
Every property of generic limit sets of CA is either trivial or
undecidable.

Properties and alphabets

A property of generic limit sets of CA is a set of subshifts and we
say that a CA has the property if it belongs to this set.

As we need to deal with arbitrary large alphabets, we consider a set
Q = {q0, q1, . . . } and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set
{{qZi }, i ∈ N}.

On the other hand, surjectivity (ω̃(F) = ΣZ) is not a property of
generic limit sets, and should not be confused with the property of
having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit
sets or none.

Properties and alphabets

A property of generic limit sets of CA is a set of subshifts and we
say that a CA has the property if it belongs to this set.
As we need to deal with arbitrary large alphabets, we consider a set
Q = {q0, q1, . . . } and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set
{{qZi }, i ∈ N}.

On the other hand, surjectivity (ω̃(F) = ΣZ) is not a property of
generic limit sets, and should not be confused with the property of
having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit
sets or none.

Properties and alphabets

A property of generic limit sets of CA is a set of subshifts and we
say that a CA has the property if it belongs to this set.
As we need to deal with arbitrary large alphabets, we consider a set
Q = {q0, q1, . . . } and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set
{{qZi }, i ∈ N}.

On the other hand, surjectivity (ω̃(F) = ΣZ) is not a property of
generic limit sets, and should not be confused with the property of
having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit
sets or none.

Properties and alphabets

A property of generic limit sets of CA is a set of subshifts and we
say that a CA has the property if it belongs to this set.
As we need to deal with arbitrary large alphabets, we consider a set
Q = {q0, q1, . . . } and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set
{{qZi }, i ∈ N}.

On the other hand, surjectivity (ω̃(F) = ΣZ) is not a property of
generic limit sets, and should not be confused with the property of
having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit
sets or none.

Properties and alphabets

A property of generic limit sets of CA is a set of subshifts and we
say that a CA has the property if it belongs to this set.
As we need to deal with arbitrary large alphabets, we consider a set
Q = {q0, q1, . . . } and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set
{{qZi }, i ∈ N}.

On the other hand, surjectivity (ω̃(F) = ΣZ) is not a property of
generic limit sets, and should not be confused with the property of
having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit
sets or none.

The proof

Outline
The proof is a reduction from the Halting Problem on empty input
for Turing machines.

Take a non trivial property P of generic limit sets of CA. Assume
there exists qn ∈ Q and a CA F1 such that:
I ω̃(F1) /∈ P
I qn /∈ Σ1 where Σ1 is the alphabet of F1

I {qZn } ∈ P
Other cases lead to a symmetric proof.

Now denote F0 the CA on alphabet {qn} whose local rule always
produces {qn}. Hence ω̃(F0) = {qZn } ∈ P.
For any Turing machine M, we will produce a CA FM such that:
I if M eventually halts on empty input, the generic limit set of

FM is {qZn };
I if M never halts on empty input, then the generic limit set of

FM is ω̃(F1).

Outline
The proof is a reduction from the Halting Problem on empty input
for Turing machines.

Take a non trivial property P of generic limit sets of CA. Assume
there exists qn ∈ Q and a CA F1 such that:
I ω̃(F1) /∈ P
I qn /∈ Σ1 where Σ1 is the alphabet of F1

I {qZn } ∈ P
Other cases lead to a symmetric proof.

Now denote F0 the CA on alphabet {qn} whose local rule always
produces {qn}. Hence ω̃(F0) = {qZn } ∈ P.
For any Turing machine M, we will produce a CA FM such that:
I if M eventually halts on empty input, the generic limit set of

FM is {qZn };
I if M never halts on empty input, then the generic limit set of

FM is ω̃(F1).

Outline
The proof is a reduction from the Halting Problem on empty input
for Turing machines.

Take a non trivial property P of generic limit sets of CA. Assume
there exists qn ∈ Q and a CA F1 such that:
I ω̃(F1) /∈ P
I qn /∈ Σ1 where Σ1 is the alphabet of F1

I {qZn } ∈ P
Other cases lead to a symmetric proof.

Now denote F0 the CA on alphabet {qn} whose local rule always
produces {qn}. Hence ω̃(F0) = {qZn } ∈ P.

For any Turing machine M, we will produce a CA FM such that:
I if M eventually halts on empty input, the generic limit set of

FM is {qZn };
I if M never halts on empty input, then the generic limit set of

FM is ω̃(F1).

Outline
The proof is a reduction from the Halting Problem on empty input
for Turing machines.

Take a non trivial property P of generic limit sets of CA. Assume
there exists qn ∈ Q and a CA F1 such that:
I ω̃(F1) /∈ P
I qn /∈ Σ1 where Σ1 is the alphabet of F1

I {qZn } ∈ P
Other cases lead to a symmetric proof.

Now denote F0 the CA on alphabet {qn} whose local rule always
produces {qn}. Hence ω̃(F0) = {qZn } ∈ P.
For any Turing machine M, we will produce a CA FM such that:
I if M eventually halts on empty input, the generic limit set of

FM is {qZn };
I if M never halts on empty input, then the generic limit set of

FM is ω̃(F1).

Overview of the construction of FM

We use two layers:

I the second layer contains a computation of F1.

I the first layer contains a structure that will simulate the
computation of M in finite areas called segments.
In every such segment, when the computation is over (due to a
time limit or the halting of M):
I the first layer is erased
I either the second layer is filled with qn or it is left as it is.

The idea is that we can produce segments of arbitrary large size in
almost every space-time diagram. Hence, if M eventually halts,
some segments will be large enough to reach this step.

Overview of the construction of FM

We use two layers:

I the second layer contains a computation of F1.

I the first layer contains a structure that will simulate the
computation of M in finite areas called segments.
In every such segment, when the computation is over (due to a
time limit or the halting of M):
I the first layer is erased
I either the second layer is filled with qn or it is left as it is.

The idea is that we can produce segments of arbitrary large size in
almost every space-time diagram. Hence, if M eventually halts,
some segments will be large enough to reach this step.

First layer: counters

We use one particular state * that can appear only in the initial
configuration.

It produces large signals (counters) that erase
everything except a counter arriving in the opposite direction. The
younger counters always erase the older in order to ensure that only
the ones generated by * remain. Then the * states are replaced
by # states.

∗∗∗∗∗∗

First layer: counters

We use one particular state * that can appear only in the initial
configuration. It produces large signals (counters) that erase
everything except a counter arriving in the opposite direction. The
younger counters always erase the older in order to ensure that only
the ones generated by * remain.

Then the * states are replaced
by # states.

∗∗∗∗∗∗

First layer: counters

We use one particular state * that can appear only in the initial
configuration. It produces large signals (counters) that erase
everything except a counter arriving in the opposite direction. The
younger counters always erase the older in order to ensure that only
the ones generated by * remain.

Then the * states are replaced
by # states.

∗∗∗∗∗∗

First layer: counters

We use one particular state * that can appear only in the initial
configuration. It produces large signals (counters) that erase
everything except a counter arriving in the opposite direction. The
younger counters always erase the older in order to ensure that only
the ones generated by * remain. Then the * states are replaced
by # states.

∗#∗#∗#∗#∗#∗#

First layer: segments
The segments are the set of cells between two consecutive # . In
each of them a simulation of M on empty input is started. In
parallel a binary counter starts to increment.

I case a○: the counter reaches the other side of the segment.
I case b○: the MT reaches the other side of the segment.
I case c○: the computation of M ends.

∗∗∗∗

#

#
#

#

First layer: segments
The segments are the set of cells between two consecutive # . In
each of them a simulation of M on empty input is started. In
parallel a binary counter starts to increment.
I case a○: the counter reaches the other side of the segment.

I case b○: the MT reaches the other side of the segment.
I case c○: the computation of M ends.

∗∗∗∗

#

#

#′

#

#′

#

a○

First layer: segments
The segments are the set of cells between two consecutive # . In
each of them a simulation of M on empty input is started. In
parallel a binary counter starts to increment.
I case a○: the counter reaches the other side of the segment.
I case b○: the MT reaches the other side of the segment.

I case c○: the computation of M ends.

∗∗∗∗

#
#′

#

#′

#

#′

#

a○
b○

First layer: segments
The segments are the set of cells between two consecutive # . In
each of them a simulation of M on empty input is started. In
parallel a binary counter starts to increment.
I case a○: the counter reaches the other side of the segment.
I case b○: the MT reaches the other side of the segment.
I case c○: the computation of M ends.

∗∗∗∗

#

#′

#

#′

#

#′

#

qn

a○
b○

c○

Cases a○ and b○

I In both cases the content of the first layer is erased in the
segment.

I The # states are also erased when both segments are.

∗∗∗∗

#

#′

#

#′

#

#′

#

qn

a○
b○

c○

Cases a○ and b○

I In both cases the content of the first layer is erased in the
segment.

I The # states are also erased when both segments are.

∗∗∗∗

#

#′

#

#′

#

#′

#

qn

a○
b○

c○

Case c○

I In this case the contents of both layers are erased and state qn
is written.

I qn is spreading, so it invades the whole configuration.

∗∗∗∗

#

#′

#

#′

#

#′

#

qn

a○
b○

c○

Case c○

I In this case the contents of both layers are erased and state qn
is written.

I qn is spreading, so it invades the whole configuration.

∗∗∗∗

#

#′

#

#′

#

#′

#

qn

a○
b○

c○

Behaviour of the first layer
If M halts on empty input, there will exist a large enough segment
to reach the end of the computation of M in almost every
configuration. In this case, the state qn is the only one that
remains in the generic limit set. (It is impossible to enable any
other state than qn.)

∗∗∗

qn

###

u v
↑
i

↑
0

Behaviour of the first layer

If M does not halt on empty input, the first layer of every segment
will eventually be erased and the second layer will remain, hence
FM will tend to act as F1.

Hence any word enabled for F1 will be enabled for FM .

Behaviour of the first layer

If M does not halt on empty input, the first layer of every segment
will eventually be erased and the second layer will remain, hence
FM will tend to act as F1.

Hence any word enabled for F1 will be enabled for FM .

Initializing the second layer

The proof works as long as the second layer performs indeed a
“reasonable“ simulation of F1.

A problem can arise if the state qn appears in the initial
configuration. Since it does not belong to the alphabet of F1, it
corrupts the whole evolution of the second layer.

To avoid this, we use the fact that the counters generated by *
states have the priority over qn.

Initializing the second layer

The proof works as long as the second layer performs indeed a
“reasonable“ simulation of F1.

A problem can arise if the state qn appears in the initial
configuration. Since it does not belong to the alphabet of F1, it
corrupts the whole evolution of the second layer.

To avoid this, we use the fact that the counters generated by *
states have the priority over qn.

Initializing the second layer

The proof works as long as the second layer performs indeed a
“reasonable“ simulation of F1.

A problem can arise if the state qn appears in the initial
configuration. Since it does not belong to the alphabet of F1, it
corrupts the whole evolution of the second layer.

To avoid this, we use the fact that the counters generated by *
states have the priority over qn.

Rewriting the initial configuration of the second layer

Take any state x0 in the alphabet of F1. The orbit of xZ0 under the
action of F1 is ultimately periodic, hence it is described by a finite
amount of data.

We can be sure that the second layer state is not qn when the first
layer state is * . Then we pretend that every other state of the
second layer in the initial configuration is x0.

Rewriting the initial configuration of the second layer

Take any state x0 in the alphabet of F1. The orbit of xZ0 under the
action of F1 is ultimately periodic, hence it is described by a finite
amount of data.

We can be sure that the second layer state is not qn when the first
layer state is * . Then we pretend that every other state of the
second layer in the initial configuration is x0.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
q q′

x0 x0 x0 x0 x0 x0 x0

Rewriting the initial configuration of the second layer

Take any state x0 in the alphabet of F1. The orbit of xZ0 under the
action of F1 is ultimately periodic, hence it is described by a finite
amount of data.

We can be sure that the second layer state is not qn when the first
layer state is * . Then we pretend that every other state of the
second layer in the initial configuration is x0.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
q q′

Perspectives

I A stronger theorem at level 2 or 3 of the arithmetical
hierarchy.

I A proof that there exist properties at every level of the
hierarchy.

I Examples of CA with a trivial generic limit set and complicated
µ-limit set or the converse.

