Rice's theorem for generic limit sets of cellular automata

Martin Delacourt LIFO, Université d'Orléans

> AUTOMATA 2021 12.07.2021

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Context

► Only 1D-CA here.

- The *limit set* is the set of all asymptotic behaviours.
- ► The *generic limit set* (Milnor 1985) is a topological approach of an asymptotic set of typical configurations .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Definitions and first results

Cellular Automata (CA)

A one-dimensional CA $\mathfrak F$ is given by:

- a finite alphabet Σ
- ▶ a radius $r \in \mathbb{N}$
- ► a local rule $\delta : \Sigma^{2r+1} \to \Sigma$

Starting from an initial configuration $c \in \Sigma^{\mathbb{Z}}$, the global rule associated to δ can be applied successively to the images $\mathfrak{F}^n(c)$ for $n \in \mathbb{N}$. We represent the orbit as the pile of configurations (time going up) called the *space-time diagram*.

Topology

We define a *distance* on the set $\Sigma^{\mathbb{Z}}$ of all configurations by :

$$\forall x, y \in \Sigma^{\mathbb{Z}}, d(x, y) = 2^{-\min\{|i|:x_i \neq y_i\}}$$

It is the *Cantor* topology and the balls are called cylinders. For a word $u \in \Sigma^*$ and a position $i \in \mathbb{Z}$, define:

|i| = 2

$$[u]_i = \{ c \in \Sigma^{\mathbb{Z}} : c_{[i..i+|u|-1]} = u \}$$

We will often write [u] for $[u]_0$.

 $\Sigma^{\mathbb{Z}}$ is compact and the cylinders form a basis of clopen sets.

Shift and subshifts

Define the shift $\sigma : \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$ with $\sigma(c)_i = c_{i+1}$ for any configuration c and position i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Shift and subshifts

Define the shift $\sigma: \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$ with $\sigma(c)_i = c_{i+1}$ for any configuration c and position i.

The shift σ is a CA and it plays a particular role:

Theorem [Hedlund 1969]

The CA are the continuous applications that commute with σ .

Shift and subshifts

Define the shift $\sigma: \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$ with $\sigma(c)_i = c_{i+1}$ for any configuration c and position i.

The shift σ is a CA and it plays a particular role:

Theorem [Hedlund 1969]

The CA are the continuous applications that commute with σ .

We are especially interested in the set of closed and σ -invariant subsets of $\Sigma^{\mathbb{Z}}$, they are called *subshifts* and can be equivalently defined by a set of forbidden patterns \mathcal{F} :

$$X_{\mathcal{F}} = \{ c \in \Sigma^{\mathbb{Z}} : \forall i \in \mathbb{Z}, \forall u \in \mathcal{F}, c_{i..i+|u|-1} \neq u \}$$

The *limit set* is the set of configurations that have antecedents arbitrarily far back in time.

$$\Omega(\mathfrak{F}) = \bigcap_{n \in \mathbb{N}} \mathfrak{F}^n(\Sigma^{\mathbb{Z}})$$

It is a subshift.

The *limit set* is the set of configurations that have antecedents arbitrarily far back in time.

$$\Omega(\mathfrak{F}) = \bigcap_{n \in \mathbb{N}} \mathfrak{F}^n(\Sigma^{\mathbb{Z}})$$

It is a subshift.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

The *limit set* is the set of configurations that have antecedents arbitrarily far back in time.

$$\Omega(\mathfrak{F}) = igcap_{n \in \mathbb{N}} \mathfrak{F}^n(\Sigma^{\mathbb{Z}})$$

It is a subshift.

 $\Omega(min)$ contains every configuration where m k m does not appear:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The *limit set* is the set of configurations that have antecedents arbitrarily far back in time.

$$\Omega(\mathfrak{F}) = igcap_{n \in \mathbb{N}} \mathfrak{F}^n(\Sigma^{\mathbb{Z}})$$

It is a subshift.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

The *limit set* is the set of configurations that have antecedents arbitrarily far back in time.

$$\Omega(\mathfrak{F}) = igcap_{n \in \mathbb{N}} \mathfrak{F}^n(\Sigma^{\mathbb{Z}})$$

It is a subshift.

 $\Omega(glid)$ contains every configuration where $\mathbb{E}^k \mathbb{P}$ does not appear:

The *generic limit set* is a topological notion. It was introduced by Milnor (1985) and most results come from Djenaoui and Guillon (2018).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The *generic limit set* is a topological notion. It was introduced by Milnor (1985) and most results come from Djenaoui and Guillon (2018).

The realm of attraction

For any subset $X \subseteq \Sigma^{\mathbb{Z}}$, define $\omega(\mathfrak{F})(X)$ as the set of limit points of orbits of configurations in X:

$$c \in \omega(\mathfrak{F})(X) \Leftrightarrow \exists c' \in X, \liminf_{t \to \infty} d(\mathfrak{F}^t(c'), c) = 0$$

For $X \subseteq \Sigma^{\mathbb{Z}}$, define the *realm of attraction*

$$\mathcal{D}(X) = \{ c \in \Sigma^{\mathbb{Z}} : \omega(\mathfrak{F})(c) \subseteq X \}$$

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

The generic limit set

The generic limit set $\tilde{\omega}(\mathfrak{F})$ of \mathfrak{F} is then defined as the intersection of all closed subsets of $\Sigma^{\mathbb{Z}}$ whose realms of attraction are comeager.

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

The generic limit set

The generic limit set $\tilde{\omega}(\mathfrak{F})$ of \mathfrak{F} is then defined as the intersection of all closed subsets of $\Sigma^{\mathbb{Z}}$ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :

• $\tilde{\omega}(\mathfrak{F})$ is a subshift.

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

The generic limit set

The generic limit set $\tilde{\omega}(\mathfrak{F})$ of \mathfrak{F} is then defined as the intersection of all closed subsets of $\Sigma^{\mathbb{Z}}$ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :

•
$$\tilde{\omega}(\mathfrak{F})$$
 is a subshift.

$$\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}) \subseteq \Omega(\mathfrak{F})$$

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

The generic limit set

The generic limit set $\tilde{\omega}(\mathfrak{F})$ of \mathfrak{F} is then defined as the intersection of all closed subsets of $\Sigma^{\mathbb{Z}}$ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :

- $\tilde{\omega}(\mathfrak{F})$ is a subshift.
- $\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}) \subseteq \Omega(\mathfrak{F})$

▶ Its realm is comeager, hence $\tilde{\omega}(\mathfrak{F})$ is nonempty.

Comeager set

A subset $X \subseteq \Sigma^{\mathbb{Z}}$ is said to be *comeager* if it contains a countable intersection of dense open sets. It implies in particular that X is dense (Baire property).

The generic limit set

The generic limit set $\tilde{\omega}(\mathfrak{F})$ of \mathfrak{F} is then defined as the intersection of all closed subsets of $\Sigma^{\mathbb{Z}}$ whose realms of attraction are comeager.

Basic properties [Djenaoui-Guillon 2018] :

- $\tilde{\omega}(\mathfrak{F})$ is a subshift.
- $\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}) \subseteq \Omega(\mathfrak{F})$

▶ Its realm is comeager, hence $\tilde{\omega}(\mathfrak{F})$ is nonempty.

•
$$ilde{\omega}(\mathfrak{F}) = \Sigma^{\mathbb{Z}} \Leftrightarrow \mathfrak{F}$$
 is surjective.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

Using a property proved in [Djenaoui-Guillon 2018], Törmä (2020) proved a combinatorial characterization of generic limit sets.

Lemma [Törmä 2020]

Let \mathfrak{F} be a CA on $\Sigma^{\mathbb{Z}}$. A word $s \in \Sigma^*$ belongs to $L(\tilde{\omega}(\mathfrak{F}))$ if and only if there exists a word $v \in \Sigma^*$ and $i \in \mathbb{Z}$ such that for all $u, w \in \Sigma^*$, there exist infinitely many $t \in \mathbb{N}$ with $\mathfrak{F}^t([uvw]_{i-|u|}) \cap [s] \neq \emptyset$. Such a word v is said to enable s.

The generic-limit set, examples

 $\tilde{\omega}(min)$ contains only the uniform configuration:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- ► The empty word enables 0.
- ▶ There is no word that enables 1.

The generic-limit set, examples

 $\tilde{\omega}(glid)$ is equal to the limit set $\Omega(glid)$ (all the configurations where \mathbb{E}^{k} does not appear).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Comparisons with a measure-theoretical approach

	μ -limit	generic	limit
	$A_{\mu}(\mathfrak{F})$	$ ilde{\omega}(\mathfrak{F})$	$\Omega(\mathfrak{F})$
min	$\{\Box^{\mathbb{Z}}\}$	$\{\Box^{\mathbb{Z}}\}$	
glid	$\{\Box^{\mathbb{Z}}\}$	X_{S}^{k}	X_{K}

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Comparisons with a measure-theoretical approach

	μ -limit	generic	limit
	$A_{\mu}(\mathfrak{F})$	$ ilde{\omega}(\mathfrak{F})$	$\Omega(\mathfrak{F})$
min	$\{\Box^{\mathbb{Z}}\}$	$\{\Box^{\mathbb{Z}}\}$	
glid	$\{\Box^{\mathbb{Z}}\}$	$X_{\mathrm{SL}^{k}\mathrm{P}}$	X_{K}

It is proved [Djenaoui-Guillon 2018] that

 $\Lambda_\mu(\mathfrak{F})\subseteq ilde\omega(\mathfrak{F})\subseteq \Omega(\mathfrak{F})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Already known

Finite sets:

▶ If the limit set is finite, it is a singleton [Culik-Pachl-Yu 1989].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Generic limit sets can have any finite cardinal.

Already known

Finite sets:

▶ If the limit set is finite, it is a singleton [Culik-Pachl-Yu 1989].

• Generic limit sets can have any finite cardinal.

The maximal complexity of the language is:

- Π_1 -complete for the limit set [Culik-Pachl-Yu 1989].
- Σ₃-complete for the generic limit set [Törmä 2020].

Rice's theorem

Rice's theorem

On Turing machines:

[Rice 1953]

Every property of languages of Turing machines is either trivial or undecidable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Rice's theorem

On Turing machines:

[Rice 1953]

Every property of languages of Turing machines is either trivial or undecidable.

Concerning CA:

Rice's theorem for limit sets of CA [Kari 1994] Every property of limit sets of CA is either trivial or undecidable.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Rice's theorem for generic limit sets of CA [Delacourt 2021]

Rice's theorem for generic limit sets of CA

Every property of generic limit sets of CA is either trivial or undecidable.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

A *property* of generic limit sets of CA is a set of subshifts and we say that a CA has the property if it belongs to this set.

A property of generic limit sets of CA is a set of subshifts and we say that a CA has the property if it belongs to this set. As we need to deal with arbitrary large alphabets, we consider a set $Q = \{q_0, q_1, \ldots\}$ and every alphabet is a subset of Q.

A property of generic limit sets of CA is a set of subshifts and we say that a CA has the property if it belongs to this set. As we need to deal with arbitrary large alphabets, we consider a set $Q = \{q_0, q_1, \ldots\}$ and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set $\{\{q_i^{\mathbb{Z}}\}, i \in \mathbb{N}\}.$

A property of generic limit sets of CA is a set of subshifts and we say that a CA has the property if it belongs to this set. As we need to deal with arbitrary large alphabets, we consider a set $Q = \{q_0, q_1, \ldots\}$ and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set $\{\{q_i^{\mathbb{Z}}\}, i \in \mathbb{N}\}.$

On the other hand, surjectivity $(\tilde{\omega}(\mathfrak{F}) = \Sigma^Z)$ is not a property of generic limit sets, and should not be confused with the property of having a fullshift as generic limit set.

A property of generic limit sets of CA is a set of subshifts and we say that a CA has the property if it belongs to this set. As we need to deal with arbitrary large alphabets, we consider a set $Q = \{q_0, q_1, ...\}$ and every alphabet is a subset of Q.

For example, the property of generic nilpotency is given by the set $\{\{q_i^{\mathbb{Z}}\}, i \in \mathbb{N}\}.$

On the other hand, surjectivity $(\tilde{\omega}(\mathfrak{F}) = \Sigma^Z)$ is not a property of generic limit sets, and should not be confused with the property of having a fullshift as generic limit set.

A property is said to be trivial if either it contains all generic limit sets or none.

The proof

The proof is a reduction from the Halting Problem on empty input for Turing machines.

The proof is a reduction from the Halting Problem on empty input for Turing machines.

Take a non trivial property \mathcal{P} of generic limit sets of CA. Assume there exists $q_n \in \mathcal{Q}$ and a CA \mathfrak{F}_1 such that:

$$\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}_1) \notin \mathcal{P}$$

- $q_n \notin \Sigma_1$ where Σ_1 is the alphabet of \mathfrak{F}_1
- $\blacktriangleright \{q_n^{\mathbb{Z}}\} \in \mathcal{P}$

Other cases lead to a symmetric proof.

The proof is a reduction from the Halting Problem on empty input for Turing machines.

Take a non trivial property \mathcal{P} of generic limit sets of CA. Assume there exists $q_n \in \mathcal{Q}$ and a CA \mathfrak{F}_1 such that:

$$\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}_1) \notin \mathcal{P}$$

• $q_n \notin \Sigma_1$ where Σ_1 is the alphabet of \mathfrak{F}_1

$$\blacktriangleright \{q_n^{\mathbb{Z}}\} \in \mathcal{P}$$

Other cases lead to a symmetric proof.

Now denote \mathfrak{F}_0 the CA on alphabet $\{q_n\}$ whose local rule always produces $\{q_n\}$. Hence $\tilde{\omega}(\mathfrak{F}_0) = \{q_n^{\mathbb{Z}}\} \in \mathcal{P}$.

The proof is a reduction from the Halting Problem on empty input for Turing machines.

Take a non trivial property \mathcal{P} of generic limit sets of CA. Assume there exists $q_n \in \mathcal{Q}$ and a CA \mathfrak{F}_1 such that:

$$\blacktriangleright \ \widetilde{\omega}(\mathfrak{F}_1) \notin \mathcal{P}$$

• $q_n \notin \Sigma_1$ where Σ_1 is the alphabet of \mathfrak{F}_1

$$\blacktriangleright \{q_n^{\mathbb{Z}}\} \in \mathcal{P}$$

Other cases lead to a symmetric proof.

Now denote \mathfrak{F}_0 the CA on alphabet $\{q_n\}$ whose local rule always produces $\{q_n\}$. Hence $\tilde{\omega}(\mathfrak{F}_0) = \{q_n^{\mathbb{Z}}\} \in \mathcal{P}$.

For any Turing machine M, we will produce a CA \mathfrak{F}_M such that:

- if *M* eventually halts on empty input, the generic limit set of \mathfrak{F}_M is $\{q_n^{\mathbb{Z}}\}$;
- if *M* never halts on empty input, then the generic limit set of \mathfrak{F}_M is $\tilde{\omega}(\mathfrak{F}_1)$.

Overview of the construction of \mathfrak{F}_M

We use two layers:

- the second layer contains a computation of \mathfrak{F}_1 .
- the first layer contains a structure that will simulate the computation of *M* in finite areas called segments.
 In every such segment, when the computation is over (due to a time limit or the halting of *M*):
 - the first layer is erased
 - either the second layer is filled with q_n or it is left as it is.

Overview of the construction of \mathfrak{F}_M

We use two layers:

- the second layer contains a computation of \mathfrak{F}_1 .
- the first layer contains a structure that will simulate the computation of *M* in finite areas called segments.
 In every such segment, when the computation is over (due to a time limit or the halting of *M*):
 - the first layer is erased
 - either the second layer is filled with q_n or it is left as it is.

The idea is that we can produce segments of arbitrary large size in almost every space-time diagram. Hence, if M eventually halts, some segments will be large enough to reach this step.

We use one particular state \ast that can appear only in the initial configuration.

We use one particular state * that can appear only in the initial configuration. It produces large signals (counters) that erase everything except a counter arriving in the opposite direction. The younger counters always erase the older in order to ensure that only the ones generated by * remain.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

We use one particular state * that can appear only in the initial configuration. It produces large signals (counters) that erase everything except a counter arriving in the opposite direction. The younger counters always erase the older in order to ensure that only the ones generated by * remain.

We use one particular state * that can appear only in the initial configuration. It produces large signals (counters) that erase everything except a counter arriving in the opposite direction. The younger counters always erase the older in order to ensure that only the ones generated by * remain. Then the * states are replaced by # states.

The segments are the set of cells between two consecutive #. In each of them a simulation of M on empty input is started. In parallel a binary counter starts to increment.

The segments are the set of cells between two consecutive #. In each of them a simulation of M on empty input is started. In parallel a binary counter starts to increment.

▶ case ⓐ: the counter reaches the other side of the segment.

The segments are the set of cells between two consecutive #. In each of them a simulation of M on empty input is started. In parallel a binary counter starts to increment.

- ▶ case ⓐ: the counter reaches the other side of the segment.
- case (b): the MT reaches the other side of the segment.

The segments are the set of cells between two consecutive #. In each of them a simulation of M on empty input is started. In parallel a binary counter starts to increment.

- ▶ case ⓐ: the counter reaches the other side of the segment.
- ▶ case (b): the MT reaches the other side of the segment.
- case \bigcirc : the computation of *M* ends.

Cases (a) and (b)

In both cases the content of the first layer is erased in the segment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Cases (a) and (b)

- In both cases the content of the first layer is erased in the segment.
- \blacktriangleright The # states are also erased when both segments are.

Case ⓒ

In this case the contents of both layers are erased and state q_n is written.

Case ©

- In this case the contents of both layers are erased and state q_n is written.
- \triangleright q_n is spreading, so it invades the whole configuration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Behaviour of the first layer

If M halts on empty input, there will exist a large enough segment to reach the end of the computation of M in almost every configuration. In this case, the state q_n is the only one that remains in the generic limit set. (It is impossible to enable any other state than q_n .)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Behaviour of the first layer

If M does not halt on empty input, the first layer of every segment will eventually be erased and the second layer will remain, hence \mathfrak{F}_M will tend to act as \mathfrak{F}_1 .

If M does not halt on empty input, the first layer of every segment will eventually be erased and the second layer will remain, hence \mathfrak{F}_M will tend to act as \mathfrak{F}_1 .

Hence any word enabled for \mathfrak{F}_1 will be enabled for \mathfrak{F}_M .

The proof works as long as the second layer performs indeed a "reasonable" simulation of $\mathfrak{F}_1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The proof works as long as the second layer performs indeed a "reasonable" simulation of $\mathfrak{F}_1.$

A problem can arise if the state q_n appears in the initial configuration. Since it does not belong to the alphabet of \mathfrak{F}_1 , it corrupts the whole evolution of the second layer.

The proof works as long as the second layer performs indeed a "reasonable" simulation of $\mathfrak{F}_1.$

A problem can arise if the state q_n appears in the initial configuration. Since it does not belong to the alphabet of \mathfrak{F}_1 , it corrupts the whole evolution of the second layer.

To avoid this, we use the fact that the counters generated by |*| states have the priority over q_n .

Rewriting the initial configuration of the second layer

Take any state x_0 in the alphabet of \mathfrak{F}_1 . The orbit of $x_0^{\mathbb{Z}}$ under the action of \mathfrak{F}_1 is ultimately periodic, hence it is described by a finite amount of data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Rewriting the initial configuration of the second layer

Take any state x_0 in the alphabet of \mathfrak{F}_1 . The orbit of $x_0^{\mathbb{Z}}$ under the action of \mathfrak{F}_1 is ultimately periodic, hence it is described by a finite amount of data.

We can be sure that the second layer state is not q_n when the first layer state is *. Then we pretend that every other state of the second layer in the initial configuration is x_0 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Rewriting the initial configuration of the second layer

Take any state x_0 in the alphabet of \mathfrak{F}_1 . The orbit of $x_0^{\mathbb{Z}}$ under the action of \mathfrak{F}_1 is ultimately periodic, hence it is described by a finite amount of data.

We can be sure that the second layer state is not q_n when the first layer state is *. Then we pretend that every other state of the second layer in the initial configuration is x_0 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Perspectives

- A stronger theorem at level 2 or 3 of the arithmetical hierarchy.
- A proof that there exist properties at every level of the hierarchy.
- Examples of CA with a trivial generic limit set and complicated μ-limit set or the converse.