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Preliminaries
Cantor Systems

A (topological) dynamical system (DS) is (X ,F ) : X is a compact
metric space and F : X → X is continuous.
If X is the Cantor space, (X ,F ) is a Cantor system.

(AZ,F ) is a cellular automaton (CA) if there exist two integers
r− ≤ r+ and a local rule f : Ar+−r−+1 → A such that

∀x ∈ AZ,∀i ∈ Z,F (x)i = f (xi+r− , . . . , xi+r+).

u ∈ An, a cylinder of u is [u]j =
{

x ∈ AZ
∣∣∣ xJj,j+nJ = u

}
.

(AZ, σ) is the shift if ∀x ∈ AZ, ∀i ∈ Z, σ(x)i = xi+1.
∗ F is a CA on AZ iff it is continuous and commutes with σ.
AZ is a Cantor space : perfect and totally disconnected.

A subshift is a closed σ-invariant subset Σ ⊆ AZ.
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Preliminaries
Cantor Equicontinuous Systems

EF ⊆ X : the set of equicontinuous points. x ∈ EF iff

∀ε > 0, ∃δ > 0,∀y ∈ Bδ(x),∀t ∈ N, d(F t(y),F t(x)) < ε.

Let s > 0. u is a s-blocking word of CA F if ∃p ∈ J0, |u| − sK such
that ∀x , y ∈ [u]0,∀t ≥ 0,F t(x)Jp,p+sJ = F t(y)Jp,p+sJ.

∗ A Cantor system is equicontinuous iff all of its trace subshifts are
finite.

The trace of a Cantor system (AZ,F ) is

T J−n,nJ
F : AZ → (A2n+1)N

x → (F t(x)J−n,nJ)t∈N
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Preliminaries
Cantor Equicontinuous Factors

(Y ,G) is a factor of a DS (X ,F ) by a map Φ : X → Y if Φ is
continuous, surjective and

Φ ◦ F = G ◦ Φ.
∗ Every DS admits a maximal equicontinuous factor.

Proposition 1 : A DS F admits a nontrivial Cantor equicontin-
uous factor if and only if F admits a nontrivial finite factor.

Proof:

Trace subshifts of G are finite G is nontrivial+︸ ︷︷ ︸
F has a nontrivial Cantor EF G is a Cantor EF of F

↓

↓
G is a factor of F +
︷ ︸︸ ︷G has a nontrivial finite trace subshift

G has a nontrivial finite factor
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Sufficient Condition (Main Property)

Proposition 2 : (Main Property) Let F be a surjective DS. If
there exists a weakly mixing subsystem that intersects every
nonempty strongly F -invariant clopen set, then F admits no
nontrivial Cantor equicontinuous factor.

Proof :

F|W is w. mixing G is a finite factor+︸ ︷︷ ︸Φ−1(
⋃

n GnΦ(W )C ) ⊆W C +

︸ ︷︷ ︸
G is surjective + +︸ ︷︷ ︸G|Φ(W ) is a singleton⋃

n∈Z Gn ⊆ Φ(W )

G is the identity over a singleton ; G is trivial.
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Coven Cellular Automaton

The Coven CA of three neighbours is

F : {0, 1}Z → {0, 1}Z defined by f : {0, 1}3 → {0, 1} such that

F (x)i = f (xi xi+1 xi+2) =
{

xi + 1 mod 2 if xi+1 = 1 and xi+2 = 0
xi otherwise .

t+1 0 0 0 1 1 1 1 0
t 0 00 0 01 0 11 1 00 1 01 1 11 0 10 1 10
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Coven Cellular Automaton

Figure: Space-time diagram of the Coven CA of three neighbours
xTime.

0s (resp. 1s) are represented by white squares (resp. black squares).
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∞1∞ is a fixed point, so

({∞1∞},F ) is a weakly mixing subsystem of this CA.

∗ A chain-transitive DS with a fixed point is chain-mixing.
∗ A chain-mixing DS has no nontrivial (finite) periodic factor.
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Coven Cellular Automaton
Blocking Words

Σ0 ∪ Σ1 is the subshift ΣF , F = {012k0, k ∈ N}. x ∈ Σ0 ∪ Σ1 iff
in x , between each 2 successive zeros, there isan odd number of 1.

Proposition 3 : Let k ∈ N. Then,
012k0 is a minimal 1-blocking word with offset 0.

Proof : By Induction.
In this CA, 00 is a minimal 1-blocking word.

F k([012k0]) ⊆ [00].
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Coven Cellular Automaton
Blocking Words

Figure: Diagram with the blocking word 01140
xTime.

0s (resp. 1s) are represented by white squares (resp. black squares)
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Coven Cellular Automaton
Blocking Words

Σ0 ∪ Σ1 is the subshift ΣF , F = {012k0, k ∈ N}. x ∈ Σ0 ∪ Σ1 iff
in x , between each 2 successive zeros, there isan odd number of 1.

Proposition 3 : Let k ∈ N. Then,
012k0 is a minimal 1-blocking word with offset 0.
The minimal blocking words are all of the form 012k0.

Proof : By Induction.
Let a, b ∈ {0, 1}, w ∈ L(Σ0), |w | = 2n − 1 and awb ∈ L(Σ0).

F 2n−1([awb]) ⊆
{

[1] if a = b
[0] if a 6= b .

So, x ∈ Σ0 ∪ Σ1 iff x is without blocking words.

14 / 23



Coven Cellular Automaton
Blocking Words

Σ0 ∪ Σ1 is the subshift ΣF , F = {012k0, k ∈ N}. x ∈ Σ0 ∪ Σ1 iff
in x , between each 2 successive zeros, there isan odd number of 1.

Proposition 3 : Let k ∈ N. Then,
012k0 is a minimal 1-blocking word with offset 0.
The minimal blocking words are all of the form 012k0.

Proof : By Induction.
Let a, b ∈ {0, 1}, w ∈ L(Σ0), |w | = 2n − 1 and awb ∈ L(Σ0).

F 2n−1([awb]) ⊆
{

[1] if a = b
[0] if a 6= b .

So, x ∈ Σ0 ∪ Σ1 iff x is without blocking words.

14 / 23



Coven Cellular Automaton
Blocking Words

Σ0 ∪ Σ1 is the subshift ΣF , F = {012k0, k ∈ N}. x ∈ Σ0 ∪ Σ1 iff
in x , between each 2 successive zeros, there isan odd number of 1.

Proposition 3 : Let k ∈ N. Then,
012k0 is a minimal 1-blocking word with offset 0.
The minimal blocking words are all of the form 012k0.

Proof : By Induction.
Let a, b ∈ {0, 1}, w ∈ L(Σ0), |w | = 2n − 1 and awb ∈ L(Σ0).

F 2n−1([awb]) ⊆
{

[1] if a = b
[0] if a 6= b .

So, x ∈ Σ0 ∪ Σ1 iff x is without blocking words.

14 / 23



Coven Cellular Automaton
Clopen Sets Without Blocking Words

Lemma 1: Let U be a strongly F -invariant clopen set.
If U ∩ (Σ0 ∪ Σ1) 6= ∅, then U contains ∞1∞.

Proof : By Induction : Base Case.

Let U be a strongly F -invariant clopen set and U contains
[u0]j , j ∈ Z, u0 contains a single zero. Let n > 1 and x ∈ [u0]j ,

x = 1∞ 0 12n−1 0 1∞.
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Coven Cellular Automaton
Clopen Sets Without Blocking Words

Figure: Base Case: Invariant clopen set contains a single zero
xTime.

0s (resp. 1s) are represented by white (red) squares (resp. black sq.).
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Lemma 1: Let U be a strongly F -invariant clopen set.
If U ∩ (Σ0 ∪ Σ1) 6= ∅, then U contains ∞1∞.

Proof : By Induction : Base Case.
Let U be a strongly F -invariant clopen set and U contains
[u0]j , j ∈ Z, u0 contains a single zero. Let n > 1 and x ∈ [u0]j ,

x = 1∞ 0 12n−1 0 1∞.

=⇒ F 2n−1(x) =1∞ 0 12n+1−1 0 1∞.

Thus,
F 2n−1(x) −→

n→∞
∞1∞ ∈ U.
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Figure: Induction Step: Invariant clopen set contains two zeros
xTime.

0s (resp. 1s) are represented by white (red) squares (resp. black sq.).
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Coven Cellular Automaton
Clopen Sets Without Blocking Words

Lemma 1: Let U be a strongly F -invariant clopen set.
If U ∩ (Σ0 ∪ Σ1) 6= ∅, then U contains ∞1∞.

Proof : By Induction : Inductive Step.
If U contains [u]j , u ∈ L(Σ0) and contains N + 1 zeros, u is of the
form v01k1 , k1 ≥ 0, with v contains N zeros. Let x ∈ [u]j .

x = 1∞ v 0 12n−1 0 1∞.

=⇒ F 2n−1(x) = 1∞ 12n−1−|v | v 0 12n−1−|v | v 12n 0 1∞.

Thus,
F 2n−1(x) −→

n→∞
∞1∞ v ∞1∞ ∈ U.
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Clopen Sets With Blocking Words

Proposition 4 : Let U be a strongly F -invariant clopen set.
Then, U ∩ (Σ0 ∪ Σ1) 6= ∅.

Proof : By Induction : Base Case.
If U contains [u]j , u contains a single minimal 1-blocking word.

∃v ∈ 0 1 (21)k′1 0 12k1 0 1 (21)k′′1 0
where k1, k ′1, k ′′1 ≥ 0, [v ]m ⊆ [u]j . Let x ∈ [v ]m.

x ∈ 1∞ (21)2n−1 0 w 0 1k′ w 0 1∞.
where w ∈ L(Σ0), |w | = 2n − 1− k ′ and 012k10 v 0w0.

=⇒ F 2n−1(x) ∈ 1∞ (21)2n 0 12n w 0 1∞.
Thus,

F 2n−1(x) ∈
n→∞

(21)∞ 0 1∞ ⊆ (Σ0 ∪ Σ1).
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Proposition 4 : Let U be a strongly F -invariant clopen set.
Then, U ∩ (Σ0 ∪ Σ1) 6= ∅.

Proof : By Induction : Inductive Step.
If U contains [u]j , u contains N + 1 minimal 1-blocking words,

∃ v = 0 v1 0 v2 0 . . . 0 vN 0 vN+1 0
with [v ]m ⊆ [u]j and 0vi0 has a single minimal 1-blocking word, ∀i .
Let x ∈ [v ]m.

x ∈ 1∞ (21)2n−1 0 12k1 0 v20 . . . 0vN 0 w 01k′ w 012n−11∞

where w ∈ L(Σ0), |w | = 2n − 1− k ′ and 012kN+10 v 0w0.

=⇒ F 2n−1(x) ∈ 1∞ (21)2n 0v ′10 . . . 0v ′N 0 12n w 0 1∞

Thus,
F 2n−1(x) ∈

n→∞
(21)∞ 0v ′10 . . . 0v ′N0 1∞.
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Conclusion

The Coven CA of three neighbours satisfies the main property,
therefore, it has no nontrivial Cantor equicontinuous factors.

Questions :

Does a chain-mixing system have a nontrivial equicontinuous
factor, which is not a Cantor system ?

Can a DS which has a nontrivial Cantor equicontinuous factor
be chain-mixing ?
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