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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.

If X is the Cantor space, (X, F) is a Cantor system.
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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.
If X is the Cantor space, (X, F) is a Cantor system.

(AZ F) is a cellular automaton (CA) if there exist two integers
r_ < ry and a local rule f : A*+~*-+1 5 A such that

Vx € AZ,Vi €7, F(X),’ = f(X,'.;,_r_, ... ,X,'+r+)

m AZ is the configuration space.
m d(x,y) =2~ mmlII€2]x#Yi} is the Cantor metric.
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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.

If X is the Cantor space, (X, F) is a Cantor system.
(A%, F) is a cellular automaton (CA) if there exist two integers

r— < ry and a local rule f : A*+~*-+1 5 A such that
Vx € AZ,Vi €7, F(X),’ = f(X,'_H_, .. ,X,'+r+).

m u€ A" acylinder of uis [u]; = {x € AZ‘X[UJ“[[ = u}.
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L Preliminaries

L Cantor Systems

A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.
If X is the Cantor space, (X, F) is a Cantor system.

(A% F) is a cellular automaton (CA) if there exist two integers
r_ < ry and alocal rule f : A+~"=F1 5 A such that
Vx € ALY € Zy F(X)i = f(Xitr_s s Xitry )

m uc A" acylinder of uis [u]; = {X € AZ‘X[U,Hn[[ = u}.
m (A%, 0) is the shift if Vx € A% Vi € Z,0(x); = Xjy1.
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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.

If X is the Cantor space, (X, F) is a Cantor system.

(A%, F) is a cellular automaton (CA) if there exist two integers
r— < ry and a local rule f : A*+~*-+1 5 A such that

Vx € AZ,Vi €7, F(X),’ = f(X,'_H_, .. ,X,'+r+).

m u€ A" acylinder of uis [u]; = {x € AZ‘X[W“[[ = u}.
m (A%, 0) is the shift if Vx € AZ,Vi € Z,0(x); = xi+1.
* Fis a CA on AZ iff it is continuous and commutes with o

u}
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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.

If X is the Cantor space, (X, F) is a Cantor system.

(A%, F) is a cellular automaton (CA) if there exist two integers
r_ < ry and a local rule f : A*+~"=F1 — A such that

Vx € AZ,Vi €7, F(X),’ = f(X,'_H_, .. ,X,'+r+).

m u€ A" acylinder of uis [u]; = {x € AZ‘X[UJ_,_n[[ = u}.
m (A%, 0) is the shift if Vx € AZ,Vi € Z,0(x); = xi+1.
* Fis a CA on AZ iff it is continuous and commutes with o

m AZ is a Cantor space : perfect and totally disconnected.
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A (topological) dynamical system (DS) is (X, F) : X is a compact
metric space and F : X — X is continuous.
If X is the Cantor space, (X, F) is a Cantor system.

(A%, F) is a cellular automaton (CA) if there exist two integers
r_ < ry and a local rule f : A*+~"=F1 — A such that

Vx € AZ,Vi €7, F(X),’ = f(X,'_Ha_, .. ,X,'+r+).

m u€ A" acylinder of uis [u]; = {x € AZ‘X[UJ_,_n[[ = u}.
m (A%, 0) is the shift if Vx € AZ,Vi € Z,0(x); = xi+1.
* Fis a CA on AZ iff it is continuous and commutes with &.

m AZ is a Cantor space : perfect and totally disconnected.

m A subshift is a closed o-invariant subset ¥ C AZ.

[m] = =
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EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,36 > 0,Vy € Bs(x),Vt € N, d(F'(y), Ft(x)) < e.
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EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,30 > 0,Vy € Bs(x), ¥t € N, d(Ft(y), Fi(x)) < e.
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EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,30 > 0,Vy € Bs(x), ¥t € N, d(Ft(y), Fi(x)) < e.
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EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,30 > 0,Vy € Bs(x), ¥t € N, d(Ft(y), Fi(x)) < e.

F is equicontinuous if £ = X.
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EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,36 > 0,Vy € Bs(x),Vt € N,d(F'(y), Fi(x)) < e.

Let s > 0. uis a s-blocking word of CA F if Ip € [0, |u| — s] such
that Vx,y € [U]o,vt > O,Ft(X)[[p,p_,_s[[ = Ft(y)[[p7p+s[[.

Do
4/23



EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,36 > 0,Vy € Bs(x),Vt € N,d(F'(y), Fi(x)) < e.

Let s > 0. v is a s-blocking word of CA F if 3p € [0, |u| — s] such
that Vx,y € [u]o,Vt > 0,F (X)[p,pts] = F(¥)[p,p+s[-

* A Cantor system is equicontinuous iff all of its trace subshifts are
finite.



EF C X : the set of equicontinuous points. x € &g iff

Ve > 0,36 > 0,Vy € Bs(x),Vt € N,d(F'(y), Fi(x)) < e.

Let s > 0. v is a s-blocking word of CA F if 3p € [0, |u| — s] such
that Vx,y € [u]o,Vt > 0,F (X)[p,pts] = F(¥)[p,p+s[-

* A Cantor system is equicontinuous iff all of its trace subshifts are
finite.

The trace of a Cantor system (AZ, F) is

T,@_—n,n[[: AZ (A2n+1)N

x — (Ft(X)[[—n,n[[)tEN
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(Y,G) is a factor of a DS (X,F) by amap ®: X — Y if ®is
continuous, surjective and

PoF=Goo.
* Every DS admits a maximal equicontinuous factor.
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(Y,G) is a factor of a DS (X,F) by amap ®: X — Y if ®is
continuous, surjective and

PoF=Goo.
* Every DS admits a maximal equicontinuous factor.

A DS (X, F) is weakly mixing, if for any nonempty open sets
U, v,U,v' Cc X, 3te N,Ft(U)N U # 0 and FE(V)N V' £ 0.

* A weakly mixing DS has no nontrivial equicontinuous factor.
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(Y,G) is a factor of a DS (X,F) by amap ®: X — Y if ®is
continuous, surjective and

PoF=Goo.

Proposition 1 : A DS F admits a nontrivial Cantor equicontin-
uous factor if and only if F admits a nontrivial finite factor.
Proof:




(Y,G) is a factor of a DS (X,F) byamap ®: X — Y if dis
continuous, surjective and

PoF=Goo.

Proposition 1 : A DS F admits a nontrivial Cantor equicontin-
uous factor if and only if F admits a nontrivial finite factor.
Proof:

G is a Cantor EF of F|
1

|Trace subshifts of G are finite | + | G is nontrivial |

}

| G has a nontrivial finite trace subshift|

7

| G has a nontrivial finite factor|

[m]

=
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L Preliminaries

|—Cantor Equicontinuous Factors

(Y,G) is a factorof a DS (X,F) byamap ®: X — Y if s
continuous, surjective and

PoF=Goo.

Proposition 1 : A DS F admits a nontrivial Cantor equicontin-
uous factor if and only if F admits a nontrivial finite factor.

Proof:
’ F has a nontrivial Cantor EF‘ ’ G is a Cantor EF of F‘

’ Trace subshifts of G are finite ‘ + ’ G is nontrivial ‘

}

’ G has a nontrivial finite trace subshift‘

G is a factor of F‘ + ’ G has a nontrivial finite factor‘
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Proposition 2 : (Main Property) Let F be a surjective DS. If
there exists a weakly mixing subsystem that intersects every
nonempty strongly F-invariant clopen set, then F admits no
nontrivial Cantor equicontinuous factor.

Proof :

«0O» «Fr « E»

«E>»

DA
7/23



Proposition 2 : (Main Property) Let F be a surjective DS. If
there exists a weakly mixing subsystem that intersects every
nonempty strongly F-invariant clopen set, then F admits no
nontrivial Cantor equicontinuous factor.

Proof :

Fiw is w. mixing

+ | G is a finite factor

Gio(w) is a singleton
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Proposition 2 : (Main Property) Let F be a surjective DS. If
there exists a weakly mixing subsystem that intersects every
nonempty strongly F-invariant clopen set, then F admits no
nontrivial Cantor equicontinuous factor.

Proof :

oYU, G"O(W)C) C WE [+ Fl is w. mixing

+ | G is a finite factor

|
Unez G" € ®(W)

Gio(w) is a singleton
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L_Sufficient Condition (Main Property)

Proposition 2 : (Main Property) Let F be a surjective DS. If
there exists a weakly mixing subsystem that intersects every
nonempty strongly F-invariant clopen set, then F admits no
nontrivial Cantor equicontinuous factor.

Proof :

o1, G"o(W)C) € W€ ‘-i- Flw is w. mixing |+ | G is a finite factor

!

’ G is surjective ‘+ Unez G" € &(W) |+ Gjo(w) is a singleton

|

’ G is the identity over a singleton ; G is trivial.
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The Coven CA of three neighbours is

F:{0,1}* — {0,1}” defined by f : {0,1}3 — {0,1} such that

F(x)i = f(xi Xi11 Xj10) = {

Xi+1mod2 if xj41=1and x;42 =0
X; otherwise

t+1 |0 0 0 1 1 1 1 0

t 000|001|{011 100|101 |111}j010|110

» AF >
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L Coven Cellular Automaton

Figure: Space-time diagram of the Coven CA of three neighbours TT/me.
Os (resp. 1s) are represented by white squares (resp. black squares).
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defined by f : {0,1}3 — {0, 1} such that

The Coven CA of three neighbours is F : {0,1}* — {0,1}*

F(x)i = f(xi Xix1 Xis2) = {

Xi+1mod2 if xj41=1and xj42 =0
Xj otherwise
t+1 ] 0 0 0 1 1 1 1 0
t 000|001 |011 100|101 |111]010]|110
1% is a fixed point, so

({°°1°°}, F) is a weakly mixing subsystem of this CA.
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The Coven CA of three neighbours is F : {0,1}* — {0,1}*
defined by f : {0,1}3 — {0, 1} such that
F(X),' = f(X,' Xi+1 X,'+2) = {

Xi

xi+1mod2 if xi11=1and xj10 =0
°°1%° is a fixed point, so

otherwise

({°°1°°}, F) is a weakly mixing subsystem of this CA.

* A chain-transitive DS with a fixed point is chain-mixing.
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The Coven CA of three neighbours is F : {0,1}* — {0,1}*
defined by f : {0,1}3 — {0, 1} such that
F(X),' = f(X,' Xi+1 X,'_|_2) = {

Xi
°°1%° is a fixed point, so

xi+1mod2 if xi11=1and xj10 =0
otherwise

({°°1°°}, F) is a weakly mixing subsystem of this CA.

* A chain-transitive DS with a fixed point is chain-mixing.

* A chain-mixing DS has no nontrivial (finite) periodic factor.

Do
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YUY is the subshift ¥r, F = {01?K0,k € N}. x € YUY iff
in x, between each 2 successive zeros, there isan odd number of 1.
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Yo U X is the subshift Yr, F = {01%%0, k € N}. x € Yo ¥, iff
in x, between each 2 successive zeros, there isan odd number of 1.

Proposition 3 : Let k € N. Then,

m 01240 is a minimal 1-blocking word with offset 0.

Proof : By Induction.

m In this CA, 00 is a minimal 1-blocking word

F*([01%k0]) C [00].



L Coven Cellular Automaton
L Blocking Words

Figure: Diagram with the blocking word 01140 TTime.
Os (resp. 1s) are represented by white squares (resp. black squares)
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L Coven Cellular Automaton
L Blocking Words

Figure: Diagram with the blocking word 0140 TTime.
Os (resp. 1s) are represented by white squares (resp. black squares).
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Yo U X is the subshift Xp, F = {01240, k € N}. x € YUY, iff

in x, between each 2 successive zeros, there isan odd number of 1.
Proposition 3 : Let k € N. Then,

m 01240 is a minimal 1-blocking word with offset 0.

m The minimal blocking words are all of the form 012%0.
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Yo U X is the subshift Xp, F = {01240, k € N}. x € YUY, iff

in x, between each 2 successive zeros, there isan odd number of 1.
Proposition 3 : Let k € N. Then,

m 01240 is a minimal 1-blocking word with offset 0.
m The minimal blocking words are all of the form 012%0.

Proof : By Induction.

m Let a,b <€ {0,1}, w € L(X0),

if a=b>b
[0]

w|=2"—1and awb € L(Xp).
F2"" ([awb)]) Q{ [ ifath

Do
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Yo U X is the subshift Xp, F = {01240, k € N}. x € YUY, iff

in x, between each 2 successive zeros, there isan odd number of 1.
Proposition 3 : Let k € N. Then,

m 01240 is a minimal 1-blocking word with offset 0.
m The minimal blocking words are all of the form 012%0.

Proof : By Induction.

m Let a,b <€ {0,1}, w € L(X0),

if a=»b
[0] if a#b =
So, x € Yo U X1 iff x is without blocking words.

w|=2"—1and awb € L(Xp).
F2* ([awb)) g{ [1]

[m]

=

Do
14/23



Lemma 1: Let U be a strongly F-invariant clopen set.
If UN(XoUZX1)#0, then U contains *°1°°.
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Lemma 1: Let U be a strongly F-invariant clopen set.
If UN(XoUZX1)#0, then U contains *°1°°.
Proof : By Induction

: Base Case.

Let U be a strongly F-invariant clopen set and U contains

[uolj,j € Z, up contains a single zero. Let n > 1 and x € [ug];,

x=1%012""101°,

«Or < Fr o«
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L Coven Cellular Automaton
|—Clopen Sets Without Blocking Words

Figure: Base Case: Invariant clopen set contains a single zero TTime.
Os (resp. 1s) are represented by white (red) squares (resp. black sq.).
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L Coven Cellular Automaton
|—Clopen Sets Without Blocking Words

Figure: Base Case: Invariant clopen set contains a single zero TT/'me.
Os (resp. 1s) are represented by white (red) squares (resp. black sq.).
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Lemma 1: Let U be a strongly F-invariant clopen set.
If UN(XoUZX1)#0, then U contains *°1°°.

Proof : By Induction

: Base Case.

Let U be a strongly F-invariant clopen set and U contains

[uolj,j € Z, ug contains a single zero. Let n > 1 and x € [uo];,

x=1%01%"101%.

— F¥ 7 (x) =1 012" 0 1%
Thus,

F(x) — ©1% e U.

Do
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L Coven Cellular Automaton
|—Clopen Sets Without Blocking Words

Figure: Induction Step: Invariant clopen set contains two zeros TT/me.
Os (resp. 1s) are represented by white (red) squares (resp. black sq.).

18/23



L Coven Cellular Automaton
|—Clopen Sets Without Blocking Words

Figure: Induction Step: Invariant clopen set contains two zeros TTime.
Os (resp. 1s) are represented by white (red) squares (resp. black sq.).
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Lemma 1: Let U be a strongly F-invariant clopen set.
If UN(XoUZX1)#0D, then U contains *°1°°.

Proof : By Induction

Inductive Step.

If U contains [u]j, u € £(Xo) and contains N + 1 zeros, u is of the
form v01k, k; > 0, with v contains N zeros. Let x € [u];.

x=1%v 012710 1%,
— F T (x) =12 12 1y 0 121 My 127 0 1%,
Thus,

n— o0

an_l(x) — 1% v 1% e U.

Do
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Then, UN (ZoUXq) # 0.

Proposition 4 : Let U be a strongly F-invariant clopen set.

Proof : By Induction

: Base Case.

If U contains [u];, u contains a single minimal 1-blocking word.

Jve 01(21)K 01201 (21)4 0
where ki, ki, ki >0, [v]m C [u];. Let x € [V]m.

X €

1°(21)2 0w 0 1¥ w0 1.
where w € L£(X), |w| = 2" — 1 — k’ and 01250 C 0wO.

— FP(x) €
Thus,

1% (21)2 012" w0 1%
2n—1
F0) ¢

(21)00 01 C (ZO ] Zl).

[m]

=
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Then, UN (ZoUXq) # 0.

Proposition 4 : Let U be a strongly F-invariant clopen set.

Proof : By Induction

Inductive Step.
If U contains [u];, u contains N + 1 minimal 1-blocking words,

FJv=0wv0wvO0...0vyOvys1 O
Let x € [V]m.

with [v], C [u]; and Ov;0 has a single minimal 1-blocking word, Vi
X €

1 (21)2"7 012K 0 1,0...0vy 0 w 01K w 012"~ 11

where w € £(Z), |w| =2" — 1 — k" and 012*¥+10 C OwO.

— F" '(x)e 1™ (21)% 0/0...0vj 012" w 0 1

Thus, )
F2"(x) € (21)%010...0vy0 1%,

[m]

=
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The Coven CA of three neighbours satisfies the main property,

therefore, it has no nontrivial Cantor equicontinuous factors.
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The Coven CA of three neighbours satisfies the main property,
therefore, it has no nontrivial Cantor equicontinuous factors.
Questions :

m Does a chain-mixing system have a nontrivial equicontinuous
factor, which is not a Cantor system ?
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The Coven CA of three neighbours satisfies the main property,
therefore, it has no nontrivial Cantor equicontinuous factors.
Questions :

m Does a chain-mixing system have a nontrivial equicontinuous
factor, which is not a Cantor system ?

m Can a DS which has a nontrivial Cantor equicontinuous factor
be chain-mixing ?

Do
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