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Background

e Opacity is a confidentiality property (firstly proposed by (Mazaré,
2004)) used to characterize information flow security, and has been
widely used to describe all kinds of scenarios in security/privacy
problems.

Kuize Zhang (TUB) OpacityRTA 3/33



Background

e Opacity is a confidentiality property (firstly proposed by (Mazaré,
2004)) used to characterize information flow security, and has been
widely used to describe all kinds of scenarios in security/privacy
problems.

@ It describes whether a labeled (aka partially-observed) system can
forbid an external intruder from making sure whether some secrets
have been visited,

Kuize Zhang (TUB) OpacityRTA 3/33



Background

e Opacity is a confidentiality property (firstly proposed by (Mazaré,
2004)) used to characterize information flow security, and has been
widely used to describe all kinds of scenarios in security/privacy
problems.

@ It describes whether a labeled (aka partially-observed) system can
forbid an external intruder from making sure whether some secrets
have been visited, given that the intruder knows complete knowledge
of the system’s structure but can only see outputs generated by the
system.
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Review of opacity results in the literature

A general framework for opacity

Run-based opacity (Bryans et al., 2008)
Qg2 g, (V secret run)
o 4, d 2. Sy qn (3 non-secret run)
st l(er...en)=L(& ... €,) (the same label seq.)

v
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Review of opacity results in the literature

Two special classes of opacity: |

Language-based (aka trace-based) opacity

€1...€h
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st. l(er...ep) =L(e ... €)

(V secret trace)
(3 non-secret trace)
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Kuize Zhang (TUB) OpacityRTA

5/33



Review of opacity results in the literature

Two special classes of opacity: |

Language-based (aka trace-based) opacity

€1...€p
€ ...,
st. l(er...ep) =L(e ... €)

(V secret trace)
(3 non-secret trace)

(the same label seq.)

v

Verification results in untimed automata

Kuize Zhang (TUB) OpacityRTA

5/33



Review of opacity results in the literature

Two special classes of opacity: |

Language-based (aka trace-based) opacity

€1 ...6n (V secret trace)
€ ..., (3 non-secret trace)
st. l(er...ep) =L(e ... €) (the same label seq.)

v

Verification results in untimed automata

e undecidable in labeled finite automata (LFAs) with e-labeling
functions (Bryans et al., 2008)

Kuize Zhang (TUB) OpacityRTA 5/33
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Two special classes of opacity: |

Language-based (aka trace-based) opacity

€1 ...6n (V secret trace)
€ ..., (3 non-secret trace)
st. l(er...ep) =L(e ... €) (the same label seq.)

v

Verification results in untimed automata
e undecidable in labeled finite automata (LFAs) with e-labeling
functions (Bryans et al., 2008)

o EXPTIME in LFAs when secret languages and non-secrete languages
are regular (Lin, 2011)
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Review of opacity results in the literature

Two special classes of opacity: |l

State-based opacity (specified according to the time when secrets visited)

e € = €it+1 én
go—>q1—> " —qi—— " —7({p
, , / ’ ,
S T A & 4 S €m. 4

Qo —qy — - —q—> - —7 4y
/ / .
st l(er...e)=L(e;...€)=1m

leivr...en) =L .. €)=

(V secret state)

(3 non-secret state)

(the same label seq.)

v
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Two special classes of opacity: |l

State-based opacity (specified according to the time when secrets visited)

i €i n
Qo = qu =+ gi— - 5 g, (V secret state)
e e e e e
R e R (3 non-secret state)
st. l(er...e) =L(€)...€)=m
Ueir . en) =L ...€,)= (the same label seq.)

v

Verification results in untimed automata (plenty of)

Initial-state opacity (ISO) (i =/ = 0), current-state opacity (CSO,

i= n,j = m), infinite-step opacity (InfSO), and K-step opacity (KSO,
|72| < K) are PSPACE-complete in LFAs, and equivalent (Saboori and
Hadjicostis, 2013) (Cassez, Dubreil, and Marchand, 2009) (Wu and
Lafortune, 2013).
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Results in timed automata (rare)

Language-based opacity
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Results in timed automata (rare)

Language-based opacity
e decidable in (labeled) real-time automata when secret languages and

non-secrete languages are those recognized by real-time automata
(Wang, Zhan, and An, 2018)
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Results in timed automata (rare)

Language-based opacity

e decidable in (labeled) real-time automata when secret languages and
non-secrete languages are those recognized by real-time automata
(Wang, Zhan, and An, 2018)

State-based opacity

@ CSO is undecidable in time-deterministic event recording automata
(Cassez, Dubreil, and Marchand, 2009).

@ ISO is decidable in real-time automata (Wang, Zhan, and An, 2018).

@ ISO, CSO, KSO, InfSO in real-time automata with complexity upper
bounds on verification (Zhang, 2021)
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@ E is a finite set of events,
@ Q C Qis a set of initial states,

o A C Qx Ex Qis the transition relation (elements of A are
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Notation in real-time automata

A (labeled) real-time automaton (RTA) is a tuple
A= (Q’ E, QO, A? Ky 2, K)a

where
e Q is a finite set of states,
@ E is a finite set of events,
@ Q C Qis a set of initial states,

o A C Qx Ex Qis the transition relation (elements of A are
transitions),

@ 1 assigns to each transition (g, e, ¢') € A (also written as ¢ = ¢') a
nonempty interval yi(€)qq of R>g with left endpoint and right
endpoint being a € Q>¢ and b € Q> U {+00}, respectively,

Y is a finite set of labels/outputs,

¢: E— Y U{e} is the labeling function.
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Notation in real-time automata

@ observable event set E, = {e € E|{(e) € X}
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@ unobservable event set E,, = {e € E|{(e) = €}
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Notation in real-time automata

@ observable event set E, = {e € E|{(e) € X}

@ unobservable event set E,, = {e € E|{(e) = €}

@ observable transition (g, e,¢') € A with e € E,

@ unobservable transition (g, e,¢') € A with e € E,
(Y(e),t) if e€ Ey,
€ if e € Ego.

¢ extended to E x R>q: /(e t)) = {

@ / recursively extended to E* and also to (E x R>g)* analogously.

o A path is either € or a sequence gy — g1 2> - -+ - qp,, where
n€Zy, (qi-1,€i,qi) € A for all i € [1, n].

L. e/t e/t en/t
A run is either € or a sequence qo / g1 /B . e/t Gn =: T,

where n € Z, (qi—1,€i,qi) € A, tj € p(ej)q,_,q for all i€ [1,n].
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Notation in real-time automata

@ observable event set E, = {e € E|{(e) € X}

@ unobservable event set E,, = {e € E|{(e) = €}

@ observable transition (g, e,¢') € A with e € E,

@ unobservable transition (g, e,¢') € A with e € E,

¢ extended to E x R>q: /(e t)) = { Ef(e), t) :i Zg go’
uo-

*

@ / recursively extended to E* and also to (E x R>g)* analogously.

o A path is either € or a sequence gy — g1 2> - -+ - qp,, where
n€Zy, (qi-1,€i,qi) € A for all i € [1, n].

L. e/t e/t en/t
A run is either € or a sequence qo / g1 /B . e/t Gn =: T,

where n € Z, (qi—1,€i,qi) € A, tj € p(ej)q,_,q for all i€ [1,n].
The timed word of  is defined by 7(7) = (e1, t;)(e2, t5) - - - (€n, t1),
where t; = Y4 ti for all i € [1,n].

@ The weight WT,. of 7 is defined by t,.
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Notation in real-time automata

Example 1
Consider the RTA Aj:

Y
u/[1,2] @ a/{1} @ a/[1,3] @ a/[1,2L@ a/[1,2L

Figure 1: An RTA A;, qo is the initial state, a is an observable event, £(a) = a, u
is unobservable, ¢(u) = e.

Kuize Zhang (TUB) OpacityRTA 11 /33



Notation in real-time automata

Example 1
Consider the RTA Aj:

Y
u/[1,2] @ a/{1} @ a/[1,3] @ a/[1,2L@ a/[1,2L

Figure 1: An RTA A;, qo is the initial state, a is an observable event, £(a) = a, u
is unobservable, ¢(u) = e.

q > q1 > 93 = gs, (path)

Kuize Zhang (TUB) OpacityRTA 11 /33



Notation in real-time automata

Example 1
Consider the RTA Aj;:

v
u/1L,2] /N a1 /N /131 /N /ML 2] N a/[1,2L‘
OO e O OO

Figure 1: An RTA A;, qo is the initial state, a is an observable event, ¢(a) = a, u
is unobservable, ¢(u) = e.

q0 > G1 > g3 = gs, (path)
a/2 a/l u/l
T=qo — g1 — g3 — g5, (run)
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y
u/[1,2] @ a/{1} @ a/[1,3] @ a/[l,ZL@ a/[1,2L

Figure 1: An RTA A;, qo is the initial state, a is an observable event, ¢(a) = a, u
is unobservable, ¢(u) = e.

g 2 q1 2 g3 > g, (path)

a/2 a/l u/l
m™=do 22, a1 A, as LAN as, (run)
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Notation in real-time automata

Example 1

Consider the RTA Aj;:

y
u/[1,2] @ a/{1} @ a/[1,3] @ a/[l,ZL@ a/[1,2L

Figure 1: An RTA A;, qo is the initial state, a is an observable event, ¢(a) = a, u
is unobservable, ¢(u) = e.

90 2> q1 > g3 = g, (path)

a/2 a/l u/l
r=a0 a5 2 gs, (run)
7'(7'(') = (aa 2)(37 3)(”7 4)7 (timed WOFd)
WT. =4, (weight)
U7(m)) = (a,2)(a,3). (timed label seq.)
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Notation in real-time automata

@ A run 7 is called instantaneous if WT,; = 0, called noninstantaneous
if WT, > 0.
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Notation in real-time automata

@ A run 7 is called instantaneous if WT, = 0, called noninstantaneous
if WT, > 0.

@ A run 7 is called unobservable if /(e; ... e,) = ¢, called observable if
ley...en) €XT.

e Given v € (X x R>g)*, [y] denotes the set of runs 7 of A starting
from initial states such that ¢(7(7)) = ~v. last([7])

Y

qo =% g1 — ¢
e — N —

Y unobs.
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Notation in real-time automata

@ A run 7w is called instantaneous if WT, = 0, called noninstantaneous
if WT, > 0.

@ A run 7 is called unobservable if {(e; ... e,) = ¢, called observable if
ley...en) €XT.

o Given v € (X x R>g)*, [y] denotes the set of runs 7 of A starting
from initial states such that ¢(7(7)) = ~. last([7])

o interm(v1,72) = {g € Q|(3 runs 71, m)[(init(7m1) € Qo) A (last(m1) =
init(m2) = q) A (((7(m1)) = 71) A (U(7(mim2)) = 1172) A (WTa, =
lastr(y1)) A (WT,, = lastr(y2) — lastr(y1))]}: the set of states A
can be in when A has just generated timed label seq. 1, given that
the current timed label seq. is y172 € (X x R>p)*.

~ Y172
... ... -A
go —q1——(q q0 q1 q a2 a3
———— —— N — —— N——
vy unobs. 71 inst. unobs. inst. unobs.
et

Kuize Zhang (TUB) OpacityRTA 12 /33



Notation in real-time automata

Example 2 (cont. A;)

!
u/1L2] /N /1) /N A/1L3] N 9/l 2) /Y a/[1,2]
(o) (o) (@) (o)
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Example 2 (cont. A;)

!
u/1L2) /N /1 /N /L3 0N /1L 2] /N o/ 2]
(o) (o) (@) (o)

last([(a,2)]) = {q1, a2},

Kuize Zhang (TUB)

OpacityRTA

13 /33



Example 2 (cont. A;)

!
u/1L2) /N /1 /N /L3 0N /1L 2] /N o/ 2]
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last([(a, 2)]) = {a1, a2},
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Example 2 (cont. A;)

!
u/1L2) /N /1 /N /L3 0N /1L 2] /N o/ 2]
(o) (o) (@) (o)

last([(a,2)]) = {q1, 92},
last([(a,2)(a, 3)]) = {q3, 94, g5},
interm(Az1, (a,2),(a,3)) = {q1, 2}
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Notation in real-time automata

Current-state estimate

For A, x C Q, and v € (X x R>q)*, the current-state estimate is

M(A,~v|x) :={q € Q|(3q0 € x)(In € N)(Im € N)

( e/t en/tn €n1/0 en+m/0 )
Jdarunm=qo gn q

[(en € Eo) A (enst .- - enim € (Euo)) AL((r)) = A}
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For A, x C Q, and v € (X x R>q)*, the current-state estimate is

M(A,~v|x) :={q € Q|(3q0 € x)(In € N)(Im € N)

( e/t en/tn €n1/0 en+m/0 )
Jdarunm=qo gn q

[(en € Eo) A (enst .- - enim € (Euo)) AL((r)) = A}

M(A,~) denotes the set of states .4 can be in when ~ has been generated.J

M(A, 7| Qo) =: M(A,7) C last([y]) for v € (¥ x R>g)*. |
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Notation in real-time automata

Example 3 (cont. A;)

!
u/1L2) /N a1} /N A/1L3] N a/IL2) 2 a/[L.2]
(o) (@) LA () A (o)
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Example 3 (cont. A;)

!
u/1L2) /N a1} /N A/1L3] N a/IL2) 2 a/[L.2]
(o) (@) LA () A (o)

last([(a, 2)]) = {q1, 92},
M( A1, (a,2)) = {q1, g2},
last([(a,2)(a, 3)]) = {q3, 94, g5},
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Example 3 (cont. A;)

!
u/1L2) /N a1} /N A/1L3] N a/IL2) 2 a/[L.2]
(o) (@) LA () A (o)

last([(a, 2)]) = {a1, a2},

M( A1, (a,2)) = {q1, a2},
last([(a, 2)(a,3)]) = {93, qa, G5},

M( A, (a,2)(a,3)) = {as, 94},
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Example 3 (cont. A;)

!
u/1L2) /N a1} /N A/1L3] N a/IL2) 2 a/[L.2]
(o) (@) LA () A (o)

last([(a,2)]) = {q1, a2},
M( A1, (a,2)) = {1, a2},
last([(a,2)(a,3)]) = {3, 4, g5},
M( A, (a,2)(a,3)) = {as, 94},
M(Aq,(a,2)(a,3)) < last([(a,2)(a,3)]).

Kuize Zhang (TUB) OpacityRTA 15 / 33
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© Main results
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Language generated by RTA A: L(A) = {v € (X x R>q)*|M(A,~) # 0} ]
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Language generated by RTA A: L(A) = {v € (X x R>q)*|M(A,~) # 0} ]

Specify a subset Qs C Q of secret states. J

Definition 4 (1SO)

An RTA A is called initial-state opaque (ISO) w.r.t. Qs if for every
7 € L(A), init([7]) Z Qs.
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Specify a subset Qs C Q of secret states. ]

Definition 4 (1SO)

An RTA A is called initial-state opaque (ISO) w.r.t. Qs if for every
7 € L(A), init([7]) Z Qs.

ISO means that when observing a timed label sequence v € L(.A), not all
possible initial states are secret, so that one cannot make sure whether the
initial state is secret.

v
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Language generated by RTA A: L(A) = {v € (X x R>q)*|M(A,~) # 0} ]

Specify a subset Qs C Q of secret states. ]

Definition 4 (1SO)

An RTA A is called initial-state opaque (ISO) w.r.t. Qs if for every
7 € L(A), init([7]) Z Qs.

ISO means that when observing a timed label sequence v € L(.A), not all
possible initial states are secret, so that one cannot make sure whether the
initial state is secret.

v

Definition 5 (CSO)

An RTA A is called current-state opaque (CSO) w.r.t. Qs if for every
v € L(A), in M(A,~) there exists at least one non-eventually-secret state.

v

Kuize Zhang (TUB) OpacityRTA 17 / 33



Definition 6

A state g of an RTA A is called eventually secret if either (1) q is secret or
(2) there is an unobservable path starting from g and along each of such
paths at least one secret state will be visited.
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Definition 6

A state g of an RTA A is called eventually secret if either (1) q is secret or
(2) there is an unobservable path starting from g and along each of such
paths at least one secret state will be visited.

Proposition 1

A state q is not eventually secret iff (1) q & Qs and (2) either there is no
unobservable path from q or there is an unobservable path from q without
any secret state that either ends at a dead state or contains a cycle.
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Definition 6

A state g of an RTA A is called eventually secret if either (1) q is secret or
(2) there is an unobservable path starting from g and along each of such
paths at least one secret state will be visited.

Proposition 1

A state q is not eventually secret iff (1) q & Qs and (2) either there is no
unobservable path from q or there is an unobservable path from q without
any secret state that either ends at a dead state or contains a cycle.

Example 7 (cont. A;)

)
u/[L2) /N a1} /N A/1L3] 0N a/IL2) A a/[L2]
(o) (o) () A (o)

Let Qs = {gs}. Then g3 is eventually secret because of the unique
unobservable path gz = g5 (with gs dead, i.e., no transition starts at gs).
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(\VEITLWESTISI  The definitions of opacity

Example 8 (cont. A;)

)
u/1L2] /N /1 N /L3 0N /1L 2] /N o/ 2]
(o) () (@) A (o)

Let Qs = {gs}.
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(\VEITLWESTISI  The definitions of opacity

Example 8 (cont. A;)

)
u/1L2] /N /1 /N /L3 0N /1L 2] /N o/ 2]
(o) ()2 () A (o)

Let Qs = {gs}. In Example 7, we have shown g3 is eventually secret.
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(\VEITLWESTISI  The definitions of opacity

Example 8 (cont. A;)

)
u/1L2] /N /1 /N /L3 0N /1L 2] /N o/ 2]
(o) ()2 () A (o)

Let Qs = {gs}. In Example 7, we have shown g3 is eventually secret. In
addition, none of g1, qo, g2, g4 is eventually secret.
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(\VEITLWESTISI  The definitions of opacity

Example 8 (cont. A;)

)
u/1L2] /N /1 /N /L3 0N /1L 2] /N o/ 2]
(o) ()2 () A (o)

Let Qs = {gs}. In Example 7, we have shown g3 is eventually secret. In
addition, none of g1, qo, g2, g4 is eventually secret. Hence A; is not CSO

w.rt. {gs}. )

Kuize Zhang (TUB) OpacityRTA 19 / 33



Definition 9 (InfSO and KSO)
An RTA A is called infinite-step opaque (InfSO) w.r.t. Qs if for all
7172 € L(A) such that 1 < |y2], interm(~1,72) contains at least one
non-secret state q.
Y172
A 4
Go —>q q »q’ q" (*)
—_—
71 inst. unobs. inst. unobs. )
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Definition 9 (InfSO and KSO)

An RTA A is called infinite-step opaque (InfSO) w.r.t. Qs if for all
7172 € L(A) such that 1 < |y2], interm(~1,72) contains at least one
non-secret state q.

Y172

Y1 inst. unobs. inst. unobs.

(*)

When observing y1v2 with 1 < |72|, one cannot make sure whether the

state when 71 has just been generated is secret.
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Definition 9 (InfSO and KSO)

An RTA A is called infinite-step opaque (InfSO) (K-step opaque (KSO))
w.r.t. Qs if for all v172 € L(A) such that 1 < |y2|(< K), interm(y1,72)
contains at least one non-secret state .

Y172

...eg\ / €y N/ " *
90 q q q q (*)
. ~ o~~~

! inst. unobs. (<K obs. events) inst. unobs.

When observing y1y2 with 1 < |72|(< K), one cannot make sure whether
the state when 1 has just been generated is secret.
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(\VEITLWESTISI  The definitions of opacity

Example 10 (cont. A;)

)
u/1L2] /N /1) /N /L3 0N /1L 2] /N o/ 2]
(o) ()2 (@) A (o)
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(\VEITLWESTISI  The definitions of opacity

Example 10 (cont. A;)

)
u/1L2] /N /1) /N /L3 0N /1L 2] /N o/ 2]
(o) ()2 (@) A (o)

For (a,3)(a,4), we only have

1172=(3,3)(a,4)

3 € 1 .
@ Lo g Y gy = interm(Ay, (a,3), (2,4) = {1}
N——

v1=(a,3) unobs. secret

which violates InfSO, i.e., A; is not InfSO w.r.t. {q:}.
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\VEITLWESTIIN  The notions of observer and reverse observer

Definition 11

For an RTA A, we define its pre-observer as a deterministic automaton

Apl‘e = (sz X R207X075£t;2)7 (1)

obs T

where X C 2@\ {0} is the state set, ¥ x Rxq the (infinite) alphabet,
xo = M(A, €) € X the unique initial state, 67, C X x (X x R>g) x X the

obs

transition relation: for all x,x € X and (o0,t) € £ x R>o,
(x, (0, t),X) € 6 iff X = M(A, (o, t)|x). For all x C Q different from xo,

obs

x € X iff there is v € (£ x R>0)" such that x= M(A,~).
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Definition 11

For an RTA A, we define its pre-observer as a deterministic automaton

Apl‘e = (sz X RZ(LXO:(SEEZ)? (1)

obs T

where X C 2@\ {0} is the state set, ¥ x Rxq the (infinite) alphabet,
xo = M(A, €) € X the unique initial state, 67, C X x (X x R>g) x X the

obs

transition relation: for all x,x € X and (o0,t) € £ x R>o,
(x, (0, t),X) € 6 iff X = M(A, (o, t)|x). For all x C Q different from xo,

obs

x € X iff there is v € (£ x R>0)" such that x= M(A,~).
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Definition 11

For an RTA A, we define its pre-observer as a deterministic automaton

APk = (X, X X R0, X0, 0512), (L)

obs

where X C 2@\ {0} is the state set, ¥ x Rxq the (infinite) alphabet,
xo = M(A, €) € X the unique initial state, 67, C X x (X x R>g) x X the

obs
transition relation: for all x,x € X and (o0,t) € £ x R>o,
(x, (0, t),X) € 6 iff X = M(A, (o, t)|x). For all x C Q different from xo,

obs

x € X iff there is v € (£ x R>0)" such that x= M(A,~).

o After 6F/° is recursively extended to 65° C X x (X x R>0)* x X, one
has for all x€ X and (o1,t1)...(0n, tn) =1 v € (X x Rxo)™,
(x0,7, %) € 65 iff M(A, 7(7)) = x, where

7(7v) = (o1, t1)(o1, t1 + ) ... (On, t1 4 - - + ty).
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\VEITLWESTIIN  The notions of observer and reverse observer

Definition 11

For an RTA A, we define its pre-observer as a deterministic automaton

APk = (X, X X R0, X0, 0512), (L)

obs

where X C 2@\ {0} is the state set, ¥ x Rxq the (infinite) alphabet,
xo = M(A, €) € X the unique initial state, 67, C X x (X x R>g) x X the

obs
transition relation: for all x,x € X and (o0,t) € £ x R>o,
(x, (0, t),X) € 6 iff X = M(A, (o, t)|x). For all x C Q different from xo,

obs

x € X iff there is v € (£ x R>0)" such that x= M(A,~).

o After 6F/° is recursively extended to 65° C X x (X x R>0)* x X, one
has for all x€ X and (o1,t1)...(0n, tn) =1 v € (X x Rxo)™,
(x0,7,x) € 0bps iff M(A, (7)) = x, where
() = (o1, t1)(o1, 1+ 2) ... (On tr + -+ + ).

@ Alphabet X x R>q is not finite, one cannot compute the whole Ag[f;.

Next, we define observer Aqps as a finite sub-automaton of A%/
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Definition 12

For an RTA A, consider its pre-observer APS = (X, L x Rxq, xp, 652, we
define its observer as a finite automaton

Aobs = (X’ Zob57 X0, 5obs)a (2)

where Xops (resp., dobs) is a finite subset of ¥ x Q> (resp., 6%}%), such
that if there exists a transition from x € X to ¥ € Xin (5obs then at least

one such transition belongs to dops.
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Definition 12

For an RTA A, consider its pre-observer APS = (X, L x Rxq, xp, 652, we
define its observer as a finite automaton

Aobs = (X’ Zob57 X0, 5obs)a (2)

where Xops (resp., dobs) is a finite subset of ¥ x Q> (resp., 6%}%), such
that if there exists a transition from x € X to ¥ € Xin (5obs then at least
one such transition belongs to dops.

Remark 1
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\VEITLWESTIIN  The notions of observer and reverse observer

Definition 12
p

For an RTA A, consider its pre-observer APS = (X, L x Rxq, xp, 652, we

define its observer as a finite automaton

Aobs = (X’ Zob57 X0, 5obs)7

pr

where Xops (resp., dobs) is a finite subset of ¥ x Q> (resp., 6%}%), such
that if there exists a transition from x € X to X € X in 655 then at least

one such transition belongs to dops.

(2)

Remark 1
@ For an RTA A, it may have more than one observer, because ¥ qps
may not be unique; but X and xyg must be unique.
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Definition 12

For an RTA A, consider its pre-observer APS = (X, L x Rxq, xp, 652, we
define its observer as a finite automaton

Aobs = (X) Zob57 X0, 5obs)7 (2)

where Xops (resp., dobs) is a finite subset of ¥ x Q> (resp., 6%}%), such

that if there exists a transition from x € X to X € X in 655 then at least
one such transition belongs to dops.

Remark 1
@ For an RTA A, it may have more than one observer, because ¥ qps
may not be unique; but X and xyg must be unique.
@ For a labeled finite automaton, it has a unique observer, which is
actually the powerset construction used for determinizing the
automaton.

Kuize Zhang (TUB) OpacityRTA 23 /33



(\VETLWEETIIERN  The notions of observer and reverse observer

Example 13 (cont. A4;)

v
u/[1,2] @ a/{1} @ a/[1,3] @ a/[1,2L@ a/[1,2L
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(\VETLWEETIIERN  The notions of observer and reverse observer

Example 13 (cont. A4;)

v
u/[1,2] @ a/{1} @ a/[1,3] @ a/[1,2L@ a/[1,2L

One of its observers is

2 1
@22 @D @

(2,3) (a,2)

Figure 2: A1 ops.

Kuize Zhang (TUB) OpacityRTA 24 /33



Theorem 14

An RTA A is CS50 w.r.t. Qs iff in observer Aqps, every reachable state x
contains at least one non-eventually-secret state of A.
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Theorem 14

An RTA A is CS50 w.r.t. Qs iff in observer Aqps, every reachable state x
contains at least one non-eventually-secret state of A.

Example 15 (cont. A;)

(2,2)

D

(a,2)

—>( 90

(a,3)
OO0

Ar. A1 obs-
Let Qs = {gs}, so the eventually secret states are g3 and gs.
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Theorem 14

An RTA A is CS50 w.r.t. Qs iff in observer Aqps, every reachable state x
contains at least one non-eventually-secret state of A.

Example 15 (cont. A;)

D

e a/[1,2)

OO0

Al' Alobs-
Let Qs = {gs}, so the eventually secret states are g3 and gs. In Aj ops,
there is a reachable state {g3} which only contains eventually secret
states, then Az is not CSO w.r.t. {gs}.

Kuize Zhang (TUB) OpacityRTA 25 /33



Theorem 16

For an RTA A, its observer Agps can be computed in 2-EXPTIME in the
size of A.
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size of A.

Proof sketch

e Compute the initial state xp = M(A, €) in polynomial time.
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Theorem 16

For an RTA A, its observer Agps can be computed in 2-EXPTIME in the
size of A.

Proof sketch
e Compute the initial state xp = M(A, €) in polynomial time.

@ Starting from xp, find all reachable states step by step together with
the corresponding transitions: check for all x;,x C Q@ and o € ¥,
whether there is a transition (x1, (0, t), x2) for some t € Q>g
(exponentially many times, each in doubly exponential time).
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Theorem 16

For an RTA A, its observer Aops can be computed in 2-EXPTIME in the
size of A.

Proof sketch

e Compute the initial state xp = M(A, €) in polynomial time.

@ Starting from xp, find all reachable states step by step together with
the corresponding transitions: check for all x;,x C Q@ and o € ¥,
whether there is a transition (x1, (0, t), x2) for some t € Q>g
(exponentially many times, each in doubly exponential time).

@ In addition, for all x1, xp, x3 C Q, if we find two transitions
(x1, (0, t),x2) and (xq, (o, ), x3) for some t,t' € Q>, then xo C x3
implies x3 ¢ M(A, (0, t)|x1). This guarantees that if there exists a
transition from x; C Q to xo» C Q in APS, then there also exists a

obs’
transition from x; C Q to xo C Q in Agps.
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o €Y, E; ={e€ E|l(e) =0}
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CompuiEien o ahne
Further reading for computing Agps

@ NP-complete exact path length problem in weighted directed graphs
Q% v, A)

M. Nykénen and E. Ukkonen (2002). “The exact path length problem”. In: Journal of Algorithms42.1, pp. 41-5%
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CompuiEien o ahne
Further reading for computing Agps

@ NP-complete exact path length problem in weighted directed graphs
Q% v, A)

@ The exact run length problem in duration directed graphs, the notion
of pre-observer, verification of other variants of state-based opacity?

M. Nykanen and E. Ukkonen (2002). “The exact path length problem”. In: Journal of Algorithms 42.1, pp. 41-53.

2K. Zhang (2021). “State-Based Opacity of Real-Time Automata”. In: 27th IFIP WG 1.5 International Workshop on
Cellular Automata and Discrete Complex Systems (AUTOMATA 2021). Ed. by Alonso Castillo-Ramirez, Pierre Guillon, and
Kévin Perrot. Vol. 90. Open Access Series in Informatics (OASlIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum
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Further reading for computing Agps

@ NP-complete exact path length problem in weighted directed graphs
Q% v, A)

@ The exact run length problem in duration directed graphs, the notion
of pre-observer, verification of other variants of state-based opacity?

o Presburger arithmetic®

M. Nykanen and E. Ukkonen (2002). “The exact path length problem”. In: Journal of Algorithms 42.1, pp. 41-53.

2K. Zhang (2021). “State-Based Opacity of Real-Time Automata”. In: 27th IFIP WG 1.5 International Workshop on
Cellular Automata and Discrete Complex Systems (AUTOMATA 2021). Ed. by Alonso Castillo-Ramirez, Pierre Guillon, and
Kévin Perrot. Vol. 90. Open Access Series in Informatics (OASlIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum

fur Informatik, 12:1-12:15.
3E. Gradel (1988). “Subclasses of Presburger arithmetic and the polynomial-time hierarchy”. In: Theoretical Computer
Science 56.3, pp. 289-301.
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Further reading for computing Agps

NP-complete exact path length problem in weighted directed graphs

(Q% V. A)!

The exact run length problem in duration directed graphs, the notion
of pre-observer, verification of other variants of state-based opacity?

Presburger arithmetic3

Observer of labeled weighted automata over the monoid (Q*, +),
computable in 2-EXPTIME*

Im. Nykénen and E. Ukkonen (2002). “The exact path length problem”. In: Journal of Algorithms 42.1, pp. 41-53.

2K. Zhang (2021). “State-Based Opacity of Real-Time Automata”. In: 27th IFIP WG 1.5 International Workshop on
Cellular Automata and Discrete Complex Systems (AUTOMATA 2021). Ed. by Alonso Castillo-Ramirez, Pierre Guillon, and
Kévin Perrot. Vol. 90. Open Access Series in Informatics (OASlIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 12:1-12:15.

3E. Gradel (1988). “Subclasses of Presburger arithmetic and the polynomial-time hierarchy”. In: Theoretical Computer
Science 56.3, pp. 289-301.

4K. Zhang. "Detectability of labeled weighted automata over monoids”. https://arxiv.org/abs/2006.14164,
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Concluding remarks

Results
@ Notions of state-based opacity in real-time automata (RTAs)
@ Notions of observer and reverse observer of RTAs

@ Verification of state-based opacity with complexity upper bounds

An open question

Lower bounds on verification of state-based opacity in RTAs (EXPSPACE
or 2-EXPTIME?)

Kuize Zhang (TUB) OpacityRTA 30/ 33



Thank you for your attention!

Questions or comments?
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