
Reversible cellular automata in presence of noise
rapidly forget everything!

Siamak Taati
Department of Mathematics, American University of Beirut

AUTOMATA 2021
Marseille — July 2021



What this talk is about

I A fundamental problem with reversible computing
−→ Hypersensitivity to external noise

• Implicitly acknowledged by Bennett, Toffoli, . . .
• Theorem: The limitation can be quantified.
• Interesting follow-up questions

I Information-theoretic argument

−→ Evolution of entropy
−→ A bootstrap lemma



Computation with physical components

Challenges in building (very small) computers

heat dissipation transient errors

thermal fluctuations

?

Warning

Our discussion will be limited to the classical setting!
[... although the quantum scenario is expected to be similar.]
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Reversible computing

Landauer’s principle (1961)

The amount of heat dissipated by erasing 1 bit of information is
at least kT ln 2.

Bennett (1973, 1982, 1989)

Every computation can be efficiently simulated by a reversible
computer.

Fredkin and Toffoli (1982)

A reversible universal logic gate:

Fredkin gate

−→ Google Scholar: 613,000 results (16,000 since 2021)



Reliable computing in presence of noise

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

I For logic circuits: Yes, if we use logarithmic redundancy!
[Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]

I . . .

I For cellular automata: Yes, but the known solution is very
sophisticated!

[Toom (1974, 1980), Gács and Reif (1988), Gács (1986, 2001)]
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Reversible and reliable?

Question

Can a reversible computer be reliable in the presence of noise?

Aharonov, Ben-Or, Impagliazzo and Nisan (1996)

The polynomial-size noisy reversible circuits* have the power of the
complexity class NC1. [Hence, exponential redundancy is needed!]

* Noise is on the wires.

−→ Problem: The graph of the circuit has exponential growth.
[Too many wires do not fit in limited space!]

−→ A more convenient mathematical framework to study this
question is the setting of cellular automata.
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Cellular automata (CA)

x

T

Tx

CA have “physics-like” features

I Finite number of possible states in each bounded region

I Local interactions [No action at a distance!]

I Reversibility and conservation laws can be easily implemented.

I Noise can be naturally incorporated.

=⇒ Convenient for mathematical reasoning about
physical implementations of computation.



Reversible CA

T

T−1

A CA is called reversible if

(i) T is invertible,

(ii) T−1 is also a CA. [Redundant!]

−→ This notion of reversibility corresponds to (is more general
than) the reversibility of the microscopic laws of physics.

−→ A non-reversible CA corresponds to a system which dissipates
heat. [by Landauer’s principle]
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Computing with reversible CA

T T−1

Toffoli (1977)

Every d-dimensional CA can be simulated by a (d+ 1)-dimensional
reversible CA.

Margolus (1984)

There exists a simple computationally universal two-dimensional
reversible CA (the billiard ball model).

Morita and Harao (1989), Dubacq (1995)

There exist simple and efficient computationally universal
one-dimensional reversible CA.



CA + noise

Xt

T (Xt)

Xt+1

T

noise

Cellular automata subject to noise

At each step,

a) first, apply the deterministic CA,

b) then, add noise independently at each site.
[Various models of noise possible!]

; A special type of probabilistic cellular automaton (PCA).



Probabilistic cellular automata (PCA)

Xt

step

Xt+1

PCA are similar to CA, except that

I The local rule is probabilistic! [Described by a stochastic matrix]

I Symbols at different sites are updated independently.

PCA are discrete-time Markov processes

I The state at time t is a random configuration Xt.

I The transition kernel has the Feller property.

[Discrete-time variants of interacting particle systems]



Computing with noisy CA

Xt

T (Xt)

Xt+1
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noise

Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise”?

x Tx

y Sy · · · Sky

encode decode
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Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise”?

A simpler prerequisite:

Problem (Remembering a bit)

Find a CA that, in presence of sufficiently weak noise is cable of
“remembering” at least 1 bit of information indefinitely!

Precise formulation in the language of Markov processes:

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains
non-ergodic!

[Ergodicity: having a unique stationary measure that attracts every trajectory]
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Computing with noisy CA

Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise”?

Toom (1974, 1980)

There exists a broad family of of CA in two and higher dimensions
that remain non-ergodic in presence of noise.

Gács and Reif (1988)

Every d-dimensional CA can be reliably simulated by a
(d+ 2)-dimensional CA. [3d reliable computer not practical!]

Gács (1986, 2001)

There exists a one-dimensional intrinsically universal CA that is
reliable in presence of noise!

[Very sophisticated construction with astronomical number of symbols!]



Surjective CA + additive noise

Xt

T (Xt)

Xt+1

T

noise

Terminology

I Surjective CA: The global map T is onto.

I Additive noise: Noise adds a random value to current value,
independently at each site. [modulo |Σ|]

Why care about surjective CA?

I Surjective CA include all reversible CA.
[... and have some similar properties!]



Surjective CA + additive noise
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Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Interpretation of the theorem

A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!
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the information in its input/software!

In fact:

I The state of any region of size n mixes in O(log n) steps.

I A finite parallel reversible computer with n noisy components
mixes in O(log n) steps. [Very limited computational power!]

[cf. Aharonov, Ben-Or, Impagliazzo, Nisan (1996)]

Practical implication

In order to implement noise-resilient (CA-like) computers, some
degree of irreversibility is necessary.

[see Bennett (1982) and Bennett and Grinstein (1985)]
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Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof idea.
Ergodicity is due to the accumulation of information.
Use entropy to measure the amount of information.

The entropy of a discrete random variable A is

H(A) := −
∑
a

P(A = a) logP(A = a) .

It measures the average information content of A.



Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof ingredients.

a) A surjective CA does not “erase” entropy, only “diffuses” it.

b) Additive noise increases entropy. [Sharp estimate needed!]

For each finite set of sites J and each time step t ≥ 0, we find

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |)

where ~ := log |Σ| is the maximum capacity of a single site.

c) A bootstrap lemma



Surjective CA + zero-range noise

Theorem [Marcovici, T. (2021?)]

A perturbation of a surjective CA with a positive zero-range noise
is ergodic provided that both the CA and the noise preserve the
same Bernoulli measure.

Proof idea.
Use pressure instead of entropy.
Use a characterization of when a surjective CA preserves a
Bernoulli measure [Kari, T. (2015)].

The pressure of a discrete random variable A w.r.t.
an energy functional f is

Ψf (A) := H(A)− E[f(A)] .

It can be thought of as a contorted version of entropy.



PCA with Bernoulli invariant measure

Theorem [Marcovici, T. (2021?)]

Every positive-rate PCA that has a Bernoulli invariant measure is
ergodic. [Same true for positive-rate IPS!]

Remarks on related results
I This simultaneously extends:

i) The above result on the ergodicity of surjective CA + noise
ii) An earlier partial result by Vasilyev (1978)

I The entropy method goes back to Boltzmann.
Its applications for lattice systems were pioneered by:

−→ Holley (1971), Holley and Stroock (1976) for IPS
−→ Kozlov and Vasilyev (1980) for PCA

I With the exception of Holley and Stroock (1976), the entropy
method has been limited to shift-invariant starting measures.

[Our result doesn’t have this limitation.]
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Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic
provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

I Using Perron–Frobenius theory

I Using a coupling argument

I . . .

I Entropy method [Goes back to Boltzmann!]



Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic
provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

I Using Perron–Frobenius theory

I Using a coupling argument

I . . .

I Entropy method [Goes back to Boltzmann!]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).
[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).
[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].

For simplicity, assume unif(Σ) is stationary.

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II) Suppose θ > 0.

If A
θ−→ B, then H(B) ≥ H(A) with equality iff A ∼ unif(Σ).
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A
θ−→ B with H(A) = H(B) < log |Σ|, a contradiction.
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Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .

Proof of exponential convergence.

It follows from Fact II′ that

H(Xt) ≥ log |Σ| − (1− κ)t
[

log |Σ| −H(X0)
]︸ ︷︷ ︸

→0

.



Entropy method for surjective CA + additive noise

J

Xt

T (Xt)

Xt+1

T

noise

Note
I The uniform Bernoulli measure is stationary.

I In order to prove ergodicity, it is enough to show that
for every finite set of sites J ,

H(Xt
J)→ |J | ~ as t→∞

where ~ := log |Σ| is the maximum capacity of each site.



Entropy method for surjective CA + additive noise

J

Xt
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Effect of a surjective CA

A surjective CA does not “erase” entropy, only “diffuses” it:

H(Y t
J ) ≥ H(Xt

J)−O(|∂J |)

Effect of additive noise
Additive noise increases entropy: ∃ constant 0 < κ ≤ 1 s.t.

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Y t

J )
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Entropy method for surjective CA + additive noise
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Combined effect

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Xt

J)−O(|∂J |) .

which implies

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |) .

for each t ≥ 0.
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H(Xt
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Evolution of entropy

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |) .

In particular:

|J | ~−H(Xt
J)︸ ︷︷ ︸

Ξ(Xt
J )

≤ O(|∂J |) for all t ≥ a log
|J |

O(|∂J |)
+ b

missing entropy
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Bootstrapping

Xt

A

n

n

Ξ(Xt
A) ≤ O(nd−1) for all t ≥ O(log n)



Bootstrapping

Xt

A
n

n

X0

N t(A)

n+ rt

n+
rt

time

Note
The restriction of Xt to A depends only on
the restriction of X0 to N t(A),
where N = [−r, r]d is the neighbourhood of the local rule.



Bootstrapping

X̃0

B

k(n+ 2rt)

k
(n

+
2
r
t)

Choose X̃0 such that

X̃0
B contains kd independent copies of X0

N t(A).

Then,

X̃t will contain kd independent copies of Xt
A inside B.
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A inside B.



Bootstrapping

X̃t

B

k(n+ 2rt)

k
(n

+
2
r
t)

It follows that

, if t ≥ O
(

log[k(n+ 2rt)]
)
,

kd Ξ(Xt
A) ≤ Ξ(X̃t

B)

≤ O
(
[k(n+ 2rt)]d−1

)
Now, given t ≥ 0, choose k := ect for c > 0 small.
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Bootstrapping

X̃t

B

k(n+ 2rt)

k
(n

+
2
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It follows that, if t ≥ O
(

log[k(n+ 2rt)]
)
,

kd Ξ(Xt
A) ≤ Ξ(X̃t

B) ≤ O
(
[k(n+ 2rt)]d−1

)
Now, given t ≥ 0, choose k := ect for c > 0 small.



Bootstrapping

X̃t

B

k(n+ 2rt)

k
(n

+
2
r
t)

Conclusion
For every t ≥ 0 large enough,

Ξ(Xt
A) ≤ O

(
(n+ 2rt)d−1e−ct

)
︸ ︷︷ ︸

→0



Conclusion

Summary

A strictly reversible CA-like computer cannot be reliable in the
presence of noise.

Question 1
What about a reversible TM-like computer?

Question 2
What about a quantum computer?

Question 3
How much irreversibility is needed to perform reliable computation?

Thank you for your attention!
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