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What this talk is about

> A fundamental problem with reversible computing
— Hypersensitivity to external noise

e Implicitly acknowledged by Bennett, Toffoli, ...
e Theorem: The limitation can be quantified.
e Interesting follow-up questions

» Information-theoretic argument

— Evolution of entropy
— A bootstrap lemma
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Challenges in building (very small) computers

thermal fluctuations

heat dissipation

Warning

Our discussion will be limited to the classical setting!

[... although the quantum scenario is expected to be similar.]



Reversible computing

Landauer’s principle (1961)

The amount of heat dissipated by erasing 1 bit of information is
at least k7' In 2.

Bennett (1973, 1982, 1989)

Every computation can be efficiently simulated by a reversible
computer.

Fredkin and Toffoli (1982)

A reversible universal logic gate:

*

Fredkin gate

— Google Scholar: 613,000 results (16,000 since 2021)
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Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]
Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

» For logic circuits: Yes, if we use logarithmic redundancy!
[Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]

> ...

» For cellular automata: Yes, but the known solution is very
sophisticated!
[Toom (1974, 1980), Gacs and Reif (1988), Gécs (1986, 2001)]
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Reversible and reliable?

Question
Can a reversible computer be reliable in the presence of noise?

Aharonov, Ben-Or, Impagliazzo and Nisan (1996)

The polynomial-size noisy reversible circuits* have the power of the
complexity class NC!. [Hence, exponential redundancy is needed!]

* Noise is on the wires.

— Problem: The graph of the circuit has exponential growth.
[Too many wires do not fit in limited space!]

— A more convenient mathematical framework to study this
question is the setting of cellular automata.



Cellular automata (CA)
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CA have “physics-like" features

» Finite number of possible states in each bounded region
» Local interactions [No action at a distance!]
P Reversibility and conservation laws can be easily implemented.

» Noise can be naturally incorporated.

= Convenient for mathematical reasoning about
physical implementations of computation.
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Reversible CA
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A CA is called reversible if
(i) T is invertible,
(ii) T~ is also a CA. [Redundant!]

— This notion of reversibility corresponds to (is more general
than) the reversibility of the microscopic laws of physics.

— A non-reversible CA corresponds to a system which dissipates
heat. [by Landauer’s principle]



Computing with reversible CA
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Toffoli (1977)

Every d-dimensional CA can be simulated by a (d + 1)-dimensional
reversible CA.

Margolus (1984)

There exists a simple computationally universal two-dimensional

reversible CA (the billiard ball model).

Morita and Harao (1989), Dubacq (1995)

There exist simple and efficient computationally universal
one-dimensional reversible CA.



CA + noise
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Cellular automata subject to noise
At each step,
a) first, apply the deterministic CA,
b) then, add noise independently at each site.

[Various models of noise possible!]

~» A special type of probabilistic cellular automaton (PCA).



Probabilistic cellular automata (PCA)
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PCA are similar to CA, except that
» The local rule is probabilistic! [Described by a stochastic matrix]

» Symbols at different sites are updated independently.

PCA are discrete-time Markov processes

» The state at time ¢ is a random configuration X?.
» The transition kernel has the Feller property.

[Discrete-time variants of interacting particle systems]



Computing with noisy CA
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Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise”?
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Computing with noisy CA

Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise” ?

A simpler prerequisite:
Problem (Remembering a bit)

Find a CA that, in presence of sufficiently weak noise is cable of
“remembering” at least 1 bit of information indefinitely!

Precise formulation in the language of Markov processes:
Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains
non-ergodic!

[Ergodicity: having a unique stationary measure that attracts every trajectory]



Computing with noisy CA

Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise” ?

Toom (1974, 1980)

There exists a broad family of of CA in two and higher dimensions
that remain non-ergodic in presence of noise.

Gécs and Reif (1988)

Every d-dimensional CA can be reliably simulated by a
(d + 2)—dimensiona| CA. [3d reliable computer not practical!]

Gécs (1986, 2001)

There exists a one-dimensional intrinsically universal CA that is
reliable in presence of noise!

[Very sophisticated construction with astronomical number of symbols!]



Surjective CA + additive noise
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Terminology

» Surjective CA: The global map T is onto.

» Additive noise: Noise adds a random value to current value,
independently at each site. [modulo |3]]

Why care about surjective CA?

» Surjective CA include all reversible CA.

[... and have some similar properties!]



Surjective CA + additive noise
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Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]



Surjective CA + additive noise

00000000OCGOCOOOIOOOS

T
<................. T(Xx")

noise< l
000000O0DOGOGOOGIOGIOGIOGOGOGOGO (!

Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Interpretation of the theorem

A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!



Reversible computing with noisy components

Interpretation of the theorem
A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!

In fact:



Reversible computing with noisy components

Interpretation of the theorem
A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!

In fact:
» The state of any region of size n mixes in O(logn) steps.



Reversible computing with noisy components

Interpretation of the theorem

A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!

In fact:
» The state of any region of size n mixes in O(logn) steps.

» A finite parallel reversible computer with n noisy components
mixes in O(lOg ’I’L) steps. [Very limited computational power!]
[cf. Aharonov, Ben-Or, Impagliazzo, Nisan (1996)]



Reversible computing with noisy components

Interpretation of the theorem

A reversible CA-like computer subject to noise rapidly forgets all
the information in its input/software!

In fact:
» The state of any region of size n mixes in O(logn) steps.
» A finite parallel reversible computer with n noisy components

mixes in O(lOg ’I’L) steps. [Very limited computational power!]
[cf. Aharonov, Ben-Or, Impagliazzo, Nisan (1996)]

Practical implication

In order to implement noise-resilient (CA-like) computers, some
degree of irreversibility is necessary.
[see Bennett (1982) and Bennett and Grinstein (1985)]



Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant

measure. [Convergence is exponentially fast!]
Proof idea.

Ergodicity is due to the accumulation of information.

Use entropy to measure the amount of information. O

The entropy of a discrete random variable A is

H(A):=-) P(A=a)logP(A=a).

It measures the average information content of A.



Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2019) and T. (2021)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof ingredients.

a) A surjective CA does not “erase” entropy, only “diffuses” it.
b) Additive noise increases entropy. [Sharp estimate needed!]
For each finite set of sites J and each time step ¢ > 0, we find

H(X7) = 1= (1 =r)][J]h=0(0]])

where h := log|X| is the maximum capacity of a single site.

c) A bootstrap lemma



Surjective CA + zero-range noise

Theorem [Marcovici, T. (20217)]

A perturbation of a surjective CA with a positive zero-range noise
is ergodic provided that both the CA and the noise preserve the
same Bernoulli measure.

Proof idea.

Use pressure instead of entropy.

Use a characterization of when a surjective CA preserves a
Bernoulli measure [Kari, T. (2015)]. O

The pressure of a discrete random variable A w.r.t.
an energy functional f is

It can be thought of as a contorted version of entropy.



PCA with Bernoulli invariant measure

Theorem [Marcovici, T. (20217)]

Every positive-rate PCA that has a Bernoulli invariant measure is
ergodic. [Same true for positive-rate IPS!]




PCA with Bernoulli invariant measure

Theorem [Marcovici, T. (20217)]

Every positive-rate PCA that has a Bernoulli invariant measure is
ergodic. [Same true for positive-rate IPS!]

Remarks on related results
» This simultaneously extends:
i) The above result on the ergodicity of surjective CA + noise
i) An earlier partial result by Vasilyev (1978)
» The entropy method goes back to Boltzmann.
Its applications for lattice systems were pioneered by:
— Holley (1971), Holley and Stroock (1976) for IPS
— Kozlov and Vasilyev (1980) for PCA
» With the exception of Holley and Stroock (1976), the entropy
method has been limited to shift-invariant starting measures.

[Our result doesn’t have this limitation.]
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As a warm-up, consider the ...

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic
provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

» Using Perron—Frobenius theory
» Using a coupling argument
> ...

» Entropy method [Goes back to Boltzmann!]
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Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set X is

H(A) = —ZP(A =a)logP(A=a).

acx
It measures the average information content of A.
Important properties of entropy
» (positivity) H(A) > 0.
» (capacity) H(A) is maximized precisely when A ~ unif(X).
» (chain rule) H(A,B) = H(A)+ H(B|A).
[...for a suitable definition of conditional entropy H(B|A)]

» (continuity) H(A) is continuous.

[...as a function of the distribution of A]
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Entropy method for finite-state Markov chains

Let X% X! ... be a Markov chain with finite state space ¥ and
transition matrix 6 : ¥ x ¥ — [0, 1].
For simplicity, assume unif () is stationary.
Facts
) If AL B, then H(B) > H(A).
[I) Suppose 6 > 0.
If A% B, then H(B) > H(A) with equality iff A ~ unif(%).

Proof of the convergence theorem.

We can assume 6 > 0.

Since H(X"), H(X?!),... is increasing and bounded from above,
it converges to a value M < log [X].

If M < log|X|, then by compactness and continuity, we can find

AL B with H(A) = H(B) < log ||, a contradiction. 0
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Entropy method for finite-state Markov chains

Let X% X! ... be a Markov chain with finite state space ¥ and
transition matrix 6 : ¥ x ¥ — [0, 1].
For simplicity, assume unif () is stationary.

Facts
) If AL B, then H(B) > H(A).
II") Suppose 6 > 0. Then, 3 constant 0 < k < 1 s.t.
If A% B, then

H(B) > klog|X|+ (1 —k)H(A) .

Proof of exponential convergence.
It follows from Fact I’ that

H(X") > log|S| — (1 - r)'[log || — H(X)] .

—0



Entropy method for surjective CA + additive noise
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» The uniform Bernoulli measure is stationary.

P In order to prove ergodicity, it is enough to show that
for every finite set of sites J,

H(XY) = |J|h  ast— oo

where i := log|X| is the maximum capacity of each site.



Entropy method for surjective CA + additive noise

0000000000O0C0OC0OCOCGOOS
r(

noise <

Effect of a surjective CA

A surjective CA does not “erase” entropy, only “diffuses” it:

H(Yj) = H(X}) - O(|oJ])

0e00000OCOCOOOOOGOOOS

0o000O0O0OCOOOOOOOOOS !
J




Entropy method for surjective CA + additive noise

0000000000O0C0OC0OCOCGOOS
r(

<ooooohoooooohoooo vt
noise

0o000O0O0OCOOOOOOOOOS !
J

Effect of a surjective CA

A surjective CA does not “erase” entropy, only “diffuses” it:
H(Y)) = H(X}) - O(|oJ]])

Effect of additive noise
Additive noise increases entropy: 3 constant 0 < k < 1 s.t.

H(X5) = w[J|h+ (1= 8)H(Y)
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H(X5™) > kT h+ (1 - s)H(X]) = O(|8]]) .
which implies

H(X5) > [1-(1=r)]J|n=0(d]]).
%/,_/
for each t > 0. e
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H(X5) > k|| A+ (1= 0)H(XY) - 0(0J]) .

which implies _
relatively smaller

—
H(Xf,) > [1 - (1- n)t] |J|h—O(|0J]) .
%/V_/
for each t > 0. e
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Entropy method for surjective CA + additive noise
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Evolution of entropy
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H(X5) > [1—(1=r)]|J|h—0(08J])].

In particular:

/]
|J|h— H(X%) <0(0J])  forall t >alog +b
‘fy—i o(j0.J])
=( J)k missing entropy



Bootstrapping
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for all ¢ > O(logn)




Bootstrapping

X 0 n —+ rt
time J |
\ «v'\ —
Xt !
Note

The restriction of X! to A depends only on

the restriction of X% to N*(A),
where N = [—r,7]? is the neighbourhood of the local rule.
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Choose X° such that

X% contains k% independent copies of X/Q/t(A).



Bootstrapping

k(n + 2rt)

(247 +w)y

th
Choose X° such that

X% contains k% independent copies of XAO/-t(A).
Then,

X will contain k% independent copies of X! inside B.
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Bootstrapping

k(n + 2rt)

B

(342 + w)y

Xt
It follows that, if ¢ > O(log[k(n + 2rt)]),

kTE(XY) < E(XE) < O([k(n +2rt))71)




Bootstrapping

k(n + 2rt)

(247 +w)y

Xt
It follows that, if ¢ > O(log[k(n + 2rt)]),

KE(XY) < 2(XE) < O([k(n +2rt) )

Now, given t > 0, choose k := e for ¢ > 0 small.
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Conclusion
For every t > 0 large enough,
=(X4) <0 ((n + 2rt)d—1e—ct) O
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Conclusion

Summary
A strictly reversible CA-like computer cannot be reliable in the
presence of noise.

Question 1
What about a reversible TM-like computer?
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What about a quantum computer?

Question 3
How much irreversibility is needed to perform reliable computation?



Conclusion

Summary

A strictly reversible CA-like computer cannot be reliable in the
presence of noise.

Question 1
What about a reversible TM-like computer?

Question 2
What about a quantum computer?

Question 3
How much irreversibility is needed to perform reliable computation?

Thank you for your attention!



