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(Von Neumann) regular elements in monoids

Definition

Let S be a monoid (set + associative product + identity element). We
say a ∈ S is (Von Neumann) regular if ∃b ∈ S : aba = a ∧ b = bab. We
say b is a generalized inverse of a.

Lemma

An element a ∈ S in a monoid is regular if and only if ∃b ∈ S : aba = a.

We say such b is a weak generalized inverse of a.

Proof.

A generalized inverse is a weak generalized inverse. If b is a weak
generalized inverse for a, then c = bab is a generalized inverse because
aca = ababa = aba ∧ cac = bababab = babab = bab = c .

For simplicity, let us concentrate on weak generalized inverses:

a is regular iff the equation aba = a has a solution
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Regular elements in monoids of functions

Example

Let S be a monoid of functions on a set X .

Then aba = a means exactly
that b maps every element in the image a(X ) to some a-preimage of it. It
does not matter what b does to elements outside the image of a.

We sometimes say such b is a section for the (codomain restriction)
a : X → a(X ), or that it splits the map a : X → a(X ).

Example

Let A be a finite alphabet, and let X = AZ. Let CA(X ) be the set of all
cellular automata on X under function composition. Then f ∈ CA(X ) is
regular if and only if there exists a cellular automaton g ∈ CA(X ) such
that for all y ∈ f (X ), g(y) is an f -preimage of y .

A cellular automaton is regular iff you can pick preimages for all
points (that have a preimage) by another cellular automaton.
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Question of Castillo-Ramirez & Gadouleau

Castillo-Ramirez & Gadouleau study regular elements in cellular automata
monoids (over general groups). They raise the following question:

Question

Which elementary cellular automata are regular (in the monoid
CA({0, 1}Z))?

Recall that elementary cellular automata are maps f : {0, 1}Z → {0, 1}Z
such that for some function floc : {0, 1}3 7→ {0, 1} we have
∀x ∈ {0, 1}Z : f (x)i = floc(x[i−1,i+1]).
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First cases of non-regularity

Lemma

If f ∈ CA(AZ) is regular, then every p-periodic point y ∈ f (AZ) has a
p-periodic f -preimage.

Proof.

A cellular automaton cannot increase the period, so the cellular
automaton g giving the preimage must give one with the same period.

Lemma

If f ∈ CA(AZ) is regular, then so are all CA equivalent to it, i.e. obtained
by flipping left and right, and/or pre- and/or postcomposing with a
symbol permutation.

Theorem (Castillo-Ramirez & Gadouleau, 2020)

The equivalence classes of the following ECA are not regular: 18, 22, 24,
25, 26, 30, 36, 37, 38, 45, 46, 54, 60, 62, 73, 90, 105, 122 and 126.

Proof.

Check the lemma above up to period 3.
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First cases of regularity

Theorem (Castillo-Ramirez & Gadouleau, 2020)

The equivalence classes of the following ECA are regular: 0, 2, 4, 5, 10,
11, 12, 13, 14, 15, 29, 35, 43, 51, 76, 128, 192 and 200.

Proof.

These have weak generalized inverses among ECA.
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Remaining cases

Question

Which of the ECA 6, 7, 9, 23, 27, 28, 33, 41, 57, 58 and 77 are regular?

Regularity is semi-decidable, by simply exhibiting a weak generalized
inverse. How to semi-decide the non-regular cases?
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The category of sofic shifts

Definition

A category consists of a class of objects C and a class of morphisms
f : X → Y between objects X ,Y ∈ C, an identity morphism 1X for each
object X ∈ C, and an associative composition rule that yields a morphism
g ◦ f : X → Z when given morphisms f : X → Y and g : Y → Z .

Definition

We say X ⊂ AZ is a sofic shift if it is defined by a regular language L of
forbidden words, i.e. X = {x ∈ AZ | ∀w ∈ L : ∀i ∈ Z : x[i ,i+|w |−1] 6= w}.

Definition

In the category of sofic shifts the objects are all sofic shifts, over all
(finite) alphabets. Morphisms are the shift-commuting continuous
functions (equivalently maps defined by local rules, equivalently
restrictions of cellular automata).
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Split epicness

Definition

A morphism f : X → Y is split epic if and only if there exists a morphism
g : Y → X such that f ◦ g = 1X . We say such g is a section of f , or splits
f .

Lemma

A cellular automaton f : AZ → AZ is regular in CA(AZ) if and only if its
codomain restriction f : AZ → f (AZ) is split epic.

Proof.

As previously observed, regularity means precisely that some cellular
automaton can pick preimages for all points having a preimage. That’s
exactly what the definition says.
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Known results about split epicness

Theorem (Salo & Törmä, 2015)

Split epicness is decidable in the category of sofic shifts.

“How can that be decidable?” – Jarkko Kari

Corollary

For each of the remaining ECA 6, 7, 9, 23, 27, 28, 33, 41, 57, 58 and 77,
there exists a proof of either regularity or non-regularity!
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What’s the algorithm?

Theorem (Salo & Törmä, 2015)

If X ,Y ⊂ AZ are sofic shifts, then f : X → Y is split epic if and only if it
admits a section with radius 3 + 9K 2 + K |A|

2K+1
.

Here, K = R(3, 3, ..., 3)
where 3 appears |Syn(X )| × 2|Syn(X )| times, R is the function from
Ramsey’s theorem, and Syn(X ) is the syntactic monoid of X .

It follows that to solve split epicness of f : X → Y , it suffices to
enumerate candidate sections g : Y → X up to that radius.

We have K = R(3, 3) = 6, so the bound on radius is 327 + 62
13

. So we
have

22
655+2·62

13

candidates to consider. Problem: That would take hours!
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Another approach based on consistent preimages

Say X ⊂ AZ is SFT if it is defined by a finite family of forbidden words.
Say x ∈ AZ is p-periodic if p is the least shift-period of x . An eventually
periodic point is one whose left and right tails are eventually periodic.
Two points x , y ∈ AZ are right asymptotic if ∃n : ∀i ≥ n : xi = yi ; left
asymptotic defined symmetrically.

Definition

Suppose f : X → Y is a morphism between two sofic shifts. We say it
admits consistent preimages for periodic points if for all N, the following
holds: There exists a choice of p-periodic f -preimages g(y) for p-periodic
points y ∈ Y , for all p ≤ N, such that... this set is consistent, in the sense
that for all eventually periodic points y ∈ Y right asymptotic to a
p-periodic point yR and left-asymptotic to a q-periodic point yL (with
p, q ≤ N), there exists an f -preimage of y in X which is left-asymptotic to
g(yL) and right-asymptotic to g(yR).

Theorem (Salo & Törmä, 2015)

If X is an SFT and Y is a sofic shift, then f : X → Y is split epic if and
only if it admits consistent preimages for periodic points.
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Another approach based on consistent preimages

Say X ⊂ AZ is SFT if it is defined by a finite family of forbidden words.
Say x ∈ AZ is p-periodic if p is the least shift-period of x . An eventually
periodic point is one whose left and right tails are eventually periodic.
Two points x , y ∈ AZ are right asymptotic if ∃n : ∀i ≥ n : xi = yi ; left
asymptotic defined symmetrically.

Definition

Suppose f : X → Y is a morphism between two sofic shifts. We say it
admits consistent preimages for periodic points if for all N, the following
holds: There exists a choice of p-periodic f -preimages g(y) for p-periodic
points y ∈ Y , for all p ≤ N, such that...

this set is consistent, in the sense
that for all eventually periodic points y ∈ Y right asymptotic to a
p-periodic point yR and left-asymptotic to a q-periodic point yL (with
p, q ≤ N), there exists an f -preimage of y in X which is left-asymptotic to
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The sensible algorithm

Theorem (Salo & Törmä, 2015)

If X is an SFT and Y is a sofic shift, then f : X → Y is split epic if and
only if it admits consistent preimages for periodic points.

Corollary

If X is an SFT, then it is decidable whether a CA f : X → X is regular.

Proof.

Semidecidability: If it is regular, find a section.

Co-semidecidability: If it is not regular, show that for some N, consistent
preimages cannot be picked for f : X → f (X ). There are finitely many
choices of preimages for ≤ N-periodic points, and for each choice checking
non-consistency is an exercise in automata theory.
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What to do in practice: non-regularity

Lemma

The ECA 9 is not regular.

Proof.

The local rule of this ECA f maps 000 7→ 1, 011 7→ 1, others to 0.
Suppose f has a section g . [rest on whiteboard]

Theorem

The ECA 9, 27, 28, 41 and 58 are not regular.

Proof.

A similar proof works in all cases: it is always enough to consider the
g -images of points of period 1 (sometimes there are two choices to
consider).

For all but ECA 9 and 28, the image is proper sofic, which in itself implies
non-regularity, giving an alternative proof in these cases.
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What to do in practice: regularity

Lemma

The ECA 7 is regular.

Proof.

The local rule maps 000 7→ 1, 001 7→ 1, 010 7→ 1. Image is the SFT with
the unique forbidden pattern 1001. Let’s guess it has an inverse with
radius 2, and deduce its local rule by looking at periodic points.
[whiteboard]

Theorem

The ECA 6, 7, 23, 33, 57 and 77 are regular.

Proof.

For most of these, doing the above (by computer, for a suitable choice of
radius) gives most (or all) values of a local rule. Guess the few remaining
values.
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Weak inverse of ECA 6

1
0

1 1 0
0

0 0 0
1

1 1
1

1 0 1
1

1 1
1

0 1 0
1

1 0
0

1 0 0
1

1 0 1
0

0 0 0
1

1 0 0
1

1 1
1

0
0

0 0
0

1

Figure: A weak generalized inverse of ECA 6. The rules are applied row by row,
and on each row from left to right. An empty box denotes a wildcard symbol,
and the first rule to apply is used. The rightmost coordinate is not actually read
by any rule.
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Weak inverse of ECA 7

0 0
1

0 1
0

0 1
1 0

Figure: A weak generalized inverse of ECA 7. ECA 35 composed with σ.
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Weak inverse of ECA 23

1 0
1

1 1
0

1 1
0

0 1
1

1 0
0

1 0
0

1
1

1
0 1

Figure: A weak generalized inverse of ECA 23.
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Weak inverse of ECA 33

1
0

0 0
1

1 1
1

1 1 0
0

0 1 1
0 1

Figure: A weak generalized inverse of ECA 33.
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Weak inverse of ECA 57

1 1
0

0 0
1

1 1
1

1 1 1
0

0 0
0

0 0 0
1

1 1 1
0

1 0 0
1

0 0 0
0

1 1 1 1
1

0 1 1
0

1 0 1 1 1
0

1 0 1 1 1
1

0 1 1 1
0

1 1
1

1 0
0

0 0
1

1 1 0 0
1

0
0

0 1 1
0

1 1 1
1

1 1 1 1
1

0
0

0 1
0

1

Figure: A weak generalized inverse of ECA 57.
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Right inverse of ECA 77

0 0
1

1 1
0

0 0
1

1 1
0

0
0

1
1

Figure: A weak generalized inverse of ECA 77.
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Questions (one of them is probably easy!)

The non-regularity proofs strongly use from the fact that half of all words
of length 3 break a unary period (001, 110, 011, 100). “Law of small
numbers”?

Question

For given n, r what is the probability that a randomly chosen n state
radius-r cellular automaton is regular?

NB. If n ≥ 2 and n + r grows, the proportion of surjective CA tends to 0.

Question

Can we improve on the theoretical complexity bound on regularity?

Question

Is there a “high-level” reason why regularity is decidable?

For injectivity and surjectivity, a high-level reason is you can program them
in a suitable logic. Solvability of the equation aba−1 = c given b, c is
undecidable [Jalonen & Kari, 2020].

Question

Is there an undecidable equation over CA({0, 1}Z) not involving inverses?
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The End

Thank you for listening!


