Graph Subshifts

Amélia Durbec

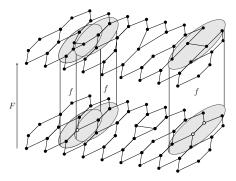
Laboratoire d'Informatique et Systèmes (LIS)

July 13, 2021

Causal graph dynamics

Causal graph dynamics (CGD) are an extension of cellular automata:

- The underlying grid becomes an arbitrary graph of bounded degree.
- The graph itself can evolve over time.



However the rule remains local and shift-invariant.

Group subshifts

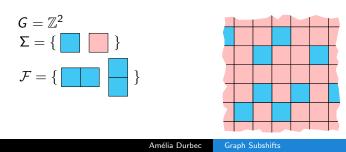
Let Σ be a finite alphabet, and G be a finitely generated group. A **configuration** is a coloring $x : G \to \Sigma$.

Definition

A subshift X is a subset of Σ^G such that there exist a set \mathcal{F} of forbidden patterns such that :

 $X = \{x \in \Sigma^{G} | x \text{ contains no patterns of } \mathcal{F}\}$

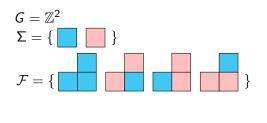
X is said to be of **finite type** if it can be defined by a finite \mathcal{F} .

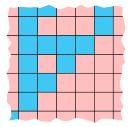


Proposition (Folklore)

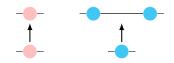
Any cellular automaton of dimension d can be seen as a subshift of finite type in dimension d + 1.

For example, the XOR of neighborhood two can be implemented as the subshift :

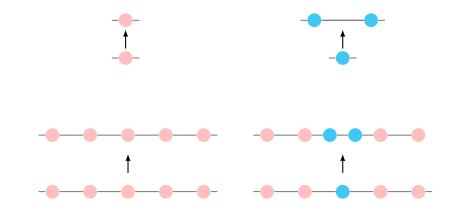




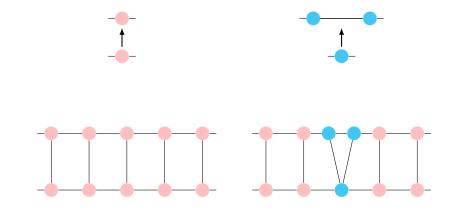
Doesn't works for graph dynamics



Doesn't works for graph dynamics



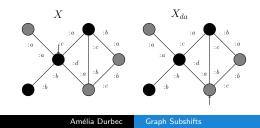
Doesn't works for graph dynamics



Definition (Configuration/Graph)

- A set V of vertices, with a special origin vertex p the pointer
- A set π of ports
- A set E of edges, where an edge is an unordered pair {u : a, v : b} with u, v ∈ V and a, b ∈ π. A port is used atmost once.
- A coloring function σ from V to Σ .

The graphs are considered modulo isomorphisms. \mathcal{X} is the set of graphs.



Definition (Cuts)

Let $\mathcal{L} \subseteq \pi^*$ be a prefix-stable language. The cut $X_{|\mathcal{L}}$ is the subgraph induced by the vertices reachable through \mathcal{L} .

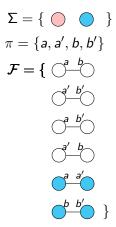
Definition (Graph Subshift)

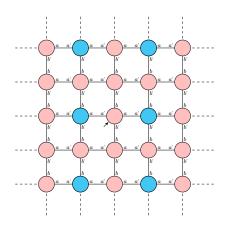
Let \mathcal{F} be a set of tuples (F, L), with F a finite graph and L a prefix-stable language. The subshift forbidding \mathcal{F} is

$$\mathcal{Z} = \left\{ X \in \mathcal{G}_{\Sigma,\pi} \middle| \forall v \in X, \forall (F,L) \in \mathcal{F}, (X_v)_{|L} \neq F \right\}.$$

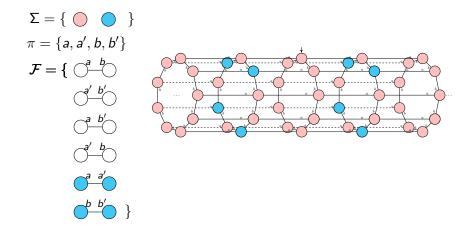
It is said to be of finite type if \mathcal{F} is finite.

Example : Generalized Hardsquare model

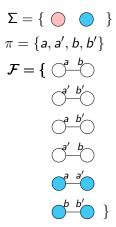


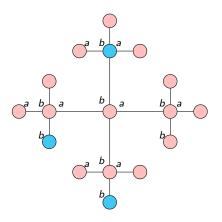


Example : Generalized Hardsquare model

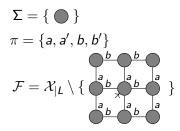


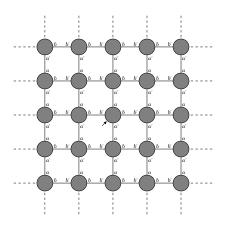
Example : Generalized Hardsquare model



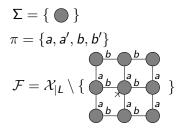


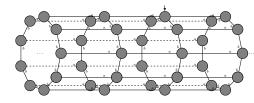
Example : Locally Grid-like





Example : Locally Grid-like





Definition (Quotient)

Let X be a graph. A X' is a quotient graph of X if there is surjective homorphism from X to X' and write $X \succeq X'$.

Definition (Periodicity)

A period of a graph X is a word $w \in \Pi^*$ such that $X = X_w$. The stabilizer of X is its set of periods.

Definition (Strong periodicity)

A graph X is said to be strongly periodic if its stabilizer STAB(X) is dense in X.

Proposition

The stabilizer of a configuration is a group under the concatenation operation.

Theorem

A graph is strongly periodic if and only if it admits a finite quotient.

Theorem

Let \mathcal{Y} a SFT. \mathcal{Y} admits a strongly periodic configuration X such that $\operatorname{STAB}(X)$ is residually finite if and only if it admits a finite graph.

Theorem

The finite configuration problem is undecidable.

Theorem

The support graph unicity problem is undecidable.

Proof idea : Take a \mathbb{Z}^2 subshift and make it a locally $\mathbb{Z}^2\text{-like}$ graph subshift.

To resume: subshifts on things that are not groups.

Perspectives: everything that has already been done in group subshifts.

Thank you for listening !