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DISCRETE DYNAMICAL SYSTEMS

= ADDSisapair <X, f >,where X is the set of states and f is the next state map.

f:X-X
x — f(x)

= Any DDS can be identified with its dynamics graph G = (V,E) where V=Xand E = {(a, ) € VXV, f(a) = B}.




DISCRETE DYNAMICAL SYSTEMS

= Complex dynamics in Discrete Dynamical Systems

= Simulations or Verification are in general unfeasible




100

101

011

111

000

010

Ascomate  Sugar Doublemuiple . Silple
(Ramin) S sugas agieans Glvco- SRS nosior?  Vatous  Newropniters . .
0ly:

genolysis vitamin Bs & thyroid hormones Proteolysis Glycosyl
(@) a0 ——
Glye Amino acids  Translation
AnnoS0aTS Proteins  Glycoproteins
o, Amino sugars o ! genesis & proteoglyoans

Hexose-P Pentose-P Transcription &
Nucleotide sugars replication =
& NADPH, ATP
Light reaction Nucleotides N:cc‘\desiu Cofactors \/ﬁ'y’g;s
Photosystems e
o =0 ryeane
fixation acids & histidine
Srres Phot co, . Antioxidants
o o o s oto- - €O, Shikimate Quinones (vitamin K)
: & carotenoids (vitamin E)
olynomial equations to transiate nypotnesis Se=
o:
Direct/ C4/CAM Terpenold
VEP MVA pathwa, erpenoids Retinoids
co, carbon intake Glycerol WA plealipil ones & carotenoids (viamin A)  (vitamin A)

complex dynamics

Hormoserine
group

&lysine

o, @

D NADH, FADH;

s N Oxidative
espiratory i

Spiralory phosphorylation \

P-glycerates Acetyl

Serine group “Gon

p Alanine

Citrate

Ketogeric &
glucogenic
amino acids

glutarate

( Fatty \
d

\ i |
synthesis Caldlferol
Laciate 6 i © amndy

O Polyketides ==\ Endo- " Giycero-
Ace Branched-chain > Fam cannabinoids  phospholipi
,cm:p : s acid __9

Steroidogenesi

Cholesterol

:

Lipogenesis

iycerolipids.

NH, - Urea

co, -
ond
Succinyl a
Amino acid Ecod)
deamination ™ N )

Keto- f l Keto- NADH
I Propiony! A
Giutamate  Iysis |  genesis | Proplon
4 Ketone

rou
Creaine  Arginine &proline bodies .
& polyamines feeders to
Urea gluconeo-
genesis SALA - Suceinate
e\ __o o
pigmen's  Hemes Ghiorophyls
Acetyl
-CoA

Acyl-CoA

e Fatty
acids

Bile acids 5©

Sterolds
ids
Glyco-
sphingolipids
Sphingolipids
=) weres
Eicosanolds

Polyunsaturated
atty acids



A COMMUTATIVE SEMIRING

SUM PRODUCT

<X f>+<Y,g>=<XuY,fug>
/ g fug <X f>%x<Y,g >=<XXY, fxg >

fug: Xuy -Xxuy (fxg)(a, B) = (f(a), g(B))

v XuY uaed =g i LhisS



HYPOTHESIS VALIDATION

w w w
a,-x; ' +a; x>+ ..+as-x;°=C

The equation admits a solution — the hypothesis is verified

(Dennunzio, Dorigatti, Formenti, Manzoni and Porreca, 2018)
It is proved that:

e the set of DDS equipped with these operations of sum and product is a commutative semiring

e the problem of finding a solution for P(xq, ..., x;) = Q(xq, ..., X5) is undecidable

e With a constant term, the complexity is beyond NP




THE MAIN IDEA

Asymptotic
behaviour
—— Transient‘ Set of
S behaviour states
;!-.::'; ‘-" e
<X, f> !
A (validator of hypothesis) |— Yes/No
hypothesis




ABSTRACTION OVER THE CARDINALITY OF STATES

(Xq, f)x] E+ (Xg, fo)xy 2 4+ (X, fdxg s = (Y, g)

Asymptotic
behaviour l

IXq %, + [XalH, 2 + -+ [Xs|X, s = Y]

Transie
behavio

Set of
states

In the this abstraction, coefficients, variables and known term are natural numbers.

X; is the cardinality of the set of states in the variable.



ABSTRACTION OVER THE ASYMPTOTIC BEHAVIOUR

<X1'f1>xr/1 + <X2'f2>x;/vz paliiie o (XSifS>x:VS — (Y' g)

Asymptotic
behaviour l
SO (@ K :
Transie Set of (@ C;lllll O x; ) (@ Cz;lzzll O 1, ) N7 ( C;l:ll O st> - @ C;ljj
behaviour states i=1 i=1 j=1

In the decidable abstraction, coefficients, variables and known term are cycles.



Given A = (X, f) and Il its set of periodic points,
we denote A the DDS induced by II.

k
K\Cni
\/ Pi

=1

A

An example...

THE NOTATION

O8O,
<@ OROBY

Figure: (Ci @ C% @ C3).




OPERATIONS OVER CYCLES

y r nai "Bj _ cmaA NAK 4 ng NBKg
A 69 B @ CpAi b @ CPB 29A11 DD CPAK N7 CPB11 SZRRAN CPBK
i=1 j=1
K4z Kg Ka
y : Nai TlBJ _ nai nB] _ cAL B gcd(paipBj)
A @ B @ Cpai O @ ¢ @ @ CpAl @ @ lem(p 4i0B))
i=1

Solving Equations on Discrete Dynamical Systems - Dennunzio, Formenti, Margara, Montmirail, Riva. (CIBB 2019)



FROM THE ABSTRACTION TO A BASIC CASE...

(Diror)o(@aror)o-o(dharon)-ha

=1 =1

Intersections and

Contraction steps
! P Cartesian products

CrOX=Cr
ENUMERATION PROBLEM

Solving Equations on Discrete Dynamical Systems - Dennunzio, Formenti, Margara, Montmirail, Riva. (CIBB 2019)



THE MDD-BASED PIPELINE

K4 K m
N4 w Ny w Ngi wg | _ nj
(Daros)o(Darow)e-o(Parow)-De
i=1 i=1 j=1
Necessary Equations Q Identification of the solutions
. Identification and resolution of the basic . Intersections and Unions to study the solutions of
equations. ' each contraction step.
Algorithmic technique to compute the roots over
Explorations of the feasible solutions space. . DDSs.
O Contractions Steps OW—th Roots

MDDs Boost Equation Solving on Discrete Dynamical Systems - Formenti, Régin, Riva. (CPAIOR 2021)



THE BASIC EQUATION C! © X = (7!

pn,qeN\{0} )

$ coins system,
ity g € N . n total

»

EnumSOBFID

Problem

Change-Making

Problem

. @Solutions

CMP
. Solutions . ©Solutions

According to the product rule: ¢ ©® ¢} = Czjéric(g(z%z)

A divisor r of g is in the coins system iff:

r<n and gcd (p

,g-r)zr and lcm(p,g-r>=q
p P



SB-MDDS (SYMMETRY BREAKING)

CLOX=Ct |

$=1{2,1},n = 6 jwip| SB—MDD M, ¢ ¢

Reduced MDD

VS

@ Solutions

Reduced SB-MDD



THE MDD-BASED PIPELINE

K4 K m
N4 w Ny . W Ngi wg | _ nj
(Darowr)o(Daow)e-a(aror)-De
i=1 i=1 j=1
Necessary Equations Q Identification of the solutions
. Identification and resolution of the basic . Intersections and Unions to study the solutions of
equations. ' each contraction step.
Algorithmic technique to compute the roots over
Explorations of the feasible solutions space. . DDSs.
@ Contractions Steps OW—th Roots



MDDS & CONTRACTIONS STEPS

For each node of a level z, the value k is
a possible label of an outgoing arc if

M k

lepjln_Z

has solution.

CS =><]";1CS]

For each monomial there is one
level into the structure + one
level for the final node.

The structure represents the
. nj
generation of the Cp]_ cycles.




EXAMPLE

C;OXDC OX=C; & dC; D,
= 33 Basic equations

® 27 Necessary equations

C; OX=C Cl OX=ch CI OX=CcCp,
CIOX=¢C} CIOX=cC} CIOX=cl,

= Contractions steps CS




THE MDD-BASED PIPELINE

K4 K m
N4 w Ny . W Ngi wg | _ nj
(Darowr)o(Daow)e-a(aror)-De
i=1 i=1 j=1
Necessary Equations @ Identification of the solutions
. Identification and resolution of the basic . Intersections and Unions to study the solutions of
equations. ' each contraction step.
Algorithmic technique to compute the roots over
Explorations of the feasible solutions space. . DDSs.
O Contractions Steps OW—th Roots
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SOLVE A CONTRACTIONS STEP

(" Each path into
CS is a feasible
contractions

\_ step

~

—P[ Set of SB-MDDs H Same monomials ]—P[ Cartesian Product ]

J

P |

[ |
L Same variable

4—[ Intersection

C;OX=C



INTERSECTION OF SB-MDDS

Set of SB- : . Set of candidate SB-Cartesian Intersection
, Classic Intersection . )
Cartesian MDDs solutions Intersection result

Example: [2,2,2,1,1,1,1]

"' The coins ¢4, ¢, are
considered equals only if

¢, > Clc, »Clandr=s

22



THE MDD-BASED PIPELINE

K4 K m
N4 w Ny . W Ngi wg | _ nj
(Darowr)o(Daow)e-a(aror)-De
i=1 i=1 j=1
Necessary Equations Q Identification of the solutions
. Identification and resolution of the basic . Intersections and Unions to study the solutions of
equations. ' each contraction step.
Algorithmic technique to compute the roots over
Explorations of the feasible solutions space. . DDSs.
O Contractions Steps @W—th Roots
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W-ROOTS OVER CYCLES

wr
xw:C;?l@CgZ@...@Cg:lh — x—Csl@C @@C;ll
O<p; <p; < ...<pp)

-

Consider that some components C;i DD C;ii of x have been already computed (with 2 < i < ).
ClD-DCH=CDC D DC " withi <t < h.lt holds that
t P1 b2 bt
Gi+1 is Min{p; € {py, ., p}D; > i A (Pj =z AN mz <my) withz €{1,..,t} V p; & {p1, ..., pe})}

.

~N

i+1 i+1

1k
. . s cd(l(qq,...,q94_1, k4, ..., K;_1), =m
s;+1integer solution of Z <k1 ky, .. l+1> l I @ 5 | I ged(l@qy s Ge-v ey, - Ke1). 40)
ki+ky+-+kit1=w
0Sk1,k2,...,ki+1SW ktio ktio

l(q1,-9i+1.K1,Kit1)=9qi+1

J




THE MDD-BASED PIPELINE

K4 K m
N4 w Ny . W Ngi wg | _ nj
(Darowr)o(Daow)e-a(aror)-De
i=1 i=1 j=1
Necessary Equations Q Identification of the solutions
. Identification and resolution of the basic . Intersections and Unions to study the solutions of
equations. ' each contraction step.
Algorithmic technique to compute the roots over
Explorations of the feasible solutions space. . DDSs.
O Contractions Steps OW—th Roots
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ABSTRACTION OVER THE TRANSIENT BEHAVIOUR

= Considering the abstraction over cycles, we showed that to solve the
abstraction it is necessary to solve two basic cases:

Asymptotic

behaviour a-X=c
XV =c
Set of
behaviour states

Also if we consider the transient parts involved in the initial equation
we are interested in these simple cases.

a-X=c
with a, ¢ that are DDS and X with a possible cyclic behaviour. ‘&

WORK IN PROGRESS
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OUR IDEA

Joint work with F. Doré and E. Formenti

WORK IN PROGRESS




CONCLUSIONS

%

A NEW MDD
APPROACH COMPACT
AND FASTER

v/

TWO DIFFERENT
ABSTRACTIONS SOLVED

A COMPLETE PIPELINE
TO SOLVE GENERIC
EQUATIONS OVER
CYCLES

A NEW ALGORITHMTO
COMPUTE W-ROOTS
OVER THE LONG-TERM

BEHAVIOUR




Q Parallel solutions computation
G Improve the SB-Cartesian intersection
FUTURE
DEVELOPMENTS 9 Test the approach over real biological networks
@ The abstraction over the transient parts of DDS
Interaction with different abstractions
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