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DISCRETE DYNAMICAL SYSTEMS

¡ A DDS is a pair < Χ, 𝑓 > , where Χ is the set of states and 𝑓 is the next state map.

¡ Any DDS can be identified with its dynamics graph G ≡ 𝑉, 𝐸 where V = Χ and E = 𝛼, 𝛽 ∈ 𝑉×𝑉, 𝑓 𝛼 = 𝛽 .

𝑓: Χ → Χ
𝑥 ⟼ 𝑓(𝑥)

𝑔! 𝑔"

𝑔#

010 101 110

011 001 000 100

111
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DISCRETE DYNAMICAL SYSTEMS

§ Complex dynamics in Discrete Dynamical Systems 

§ Simulations or Verification are in general unfeasible
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EQUATIONS OVER DDS

§ Polynomial equations to translate hypothesis on 
complex dynamics

§ Solutions provide the validation of the 
hypothesis
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A COMMUTATIVE SEMIRING

< 𝚾, 𝒇 > +< 𝚼, 𝒈 > = < 𝚾 ⊔ 𝚼, 𝒇 ⊔ 𝒈 >

𝒇 ⊔ 𝒈 ∶ 𝚾 ⊔ 𝚼 → 𝚾 ⊔ 𝚼

∀ (𝜶, 𝒊) ∈ 𝚾 ⊔ 𝚼 𝒇 ⊔ 𝒈 𝜶, 𝒊 = 3 𝒇 𝜶 , 𝒊 𝒊𝒇 𝜶 ∈ 𝚾 ∧ 𝒊 = 𝟎
𝒈 𝜶 , 𝒊 𝒊𝒇 𝜶 ∈ 𝚼 ∧ 𝒊 = 𝟏

< 𝚾, 𝒇 > ×< 𝚼, 𝒈 > = < 𝚾×𝚼, 𝒇×𝒈 >

𝒇×𝒈 𝜶, 𝜷 = (𝒇 𝜶 , 𝒈 𝜷 )

SUM PRODUCT
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HYPOTHESIS  VALIDATION

𝒂𝟏 " 𝒙𝟏
𝒘𝟏 + 𝒂𝟐 " 𝒙𝟐

𝒘𝟐 + …+ 𝒂𝒔 " 𝒙𝒔
𝒘𝒔 = 𝑪

The equation admits a solution → the hypothesis is verified

(Dennunzio, Dorigatti, Formenti, Manzoni and Porreca, 2018)
It is proved that:

● the set of DDS equipped with these operations of sum and product is a commutative semiring

● the problem of finding a solution for 𝑃 𝑥!, … , 𝑥$ = 𝑄 𝑥!, … , 𝑥$ is undecidable

● With a constant term, the complexity is beyond NP
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THE MAIN IDEA 

Asymptotic 
behaviour

Set of 
states

Transient 
behaviour
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ABSTRACTION OVER THE CARDINALITY OF STATES

• In the this abstraction, coefficients, variables and known term are natural numbers.

• 𝑥̅! is the cardinality of the set of states in the variable.

Χ9, 𝑓9 𝑥9
:" + Χ;, 𝑓; 𝑥;

:# +⋯+ Χ<, 𝑓< 𝑥<
:$ = Υ, 𝑔

Χ9 𝑥̅9
:" + Χ; 𝑥̅;

:# +⋯+ Χ= 𝑥̅<
:$ = Υ

Asymptotic 
behaviour

Set of 
states

Transient 
behaviour
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ABSTRACTION OVER THE ASYMPTOTIC BEHAVIOUR 

In the decidable abstraction, coefficients, variables and known term are cycles.

<
%&!

'!

𝐶(!"
)!" ⊙ 𝑥̇!

*! ⊕ <
%&!

'#

𝐶(#"
)#" ⊙ 𝑥̇"

*# ⊕⋯⊕ <
%&!

'$

𝐶($"
)$" ⊙ 𝑥̇$

*$ =<
+&!

,

𝐶(%
)%

Asymptotic 
behaviour

Set of 
states

Transient 
behaviour

ΧB, 𝑓B 𝑥B
C! + ΧD, 𝑓D 𝑥D

C" +⋯+ ΧE, 𝑓E 𝑥E
C# = Υ, 𝑔
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THE NOTATION
An example…

Given 𝐴 ≡ 𝛸, 𝑓 and Π its set of periodic points, 
we denote 𝐴̇ the DDS induced by Π.

𝐴̇ =/
FGB

H

𝐶I$
J$

a d e

b c

g h

f

Figure: (𝐶99⊕ 𝐶;;⊕𝐶>9).
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OPERATIONS OVER CYCLES

𝑨̇ ⊕ 𝑩̇

𝑨̇ ⊙ 𝑩̇

<
%&!

'&

𝐶(&"
)&" ⊕<

+&!

''

𝐶('%
)'% = 𝐶(&!

)&! ⊕⋯⊕𝐶(&(&
)&(& ⊕𝐶('!

)'! ⊕⋯⊕𝐶('('
)'('

<
%&!

'&

𝐶(&"
)&" ⊙<

+&!

''

𝐶('%
)'% =<

%&!

'&

<
+&!

''

𝐶(&"
)&" ⊙𝐶('%

)'% =<
%&!

'&

<
+&!

''

𝐶-./((&",('%)
)&" ⋅)'%⋅4.5((&",('%)

Solving Equations on Discrete Dynamical Systems - Dennunzio, Formenti, Margara, Montmirail, Riva. (CIBB 2019) 12



FROM THE ABSTRACTION TO A BASIC CASE…

Contraction steps Intersections and 
Cartesian products

ENUMERATION PROBLEM

3
?@9

A"

𝐶B"%
C"% ⊙ ̇𝑋9 ⊕ 3

?@9

A#

𝐶B#%
C#% ⊙ ̇𝑋; ⊕⋯⊕ 3

?@9

A$

𝐶B$%
C$% ⊙ ̇𝑋< =3

D@9

E

𝐶B&
C&

𝐶&'⊙ 𝑋̇ = 𝐶()

Solving Equations on Discrete Dynamical Systems - Dennunzio, Formenti, Margara, Montmirail, Riva. (CIBB 2019) 13



THE MDD-BASED PIPELINE

Identification and resolution of the basic 
equations.

Necessary Equations

Explorations of the feasible solutions space.

Contractions Steps

Intersections and Unions to study the solutions of 
each contraction step.

Identification of the solutions

Algorithmic technique to compute the roots over 
DDSs.

W-th Roots

%
!"#

$!

𝐶%!"
&!" ⊙ 𝑥̇#

'! ⊕ %
!"#

$#

𝐶%#"
&#" ⊙ 𝑥̇(

'# ⊕⋯⊕ %
!"#

$$

𝐶%$"
&$" ⊙ 𝑥̇)

'$ =%
*"#

+

𝐶%%
&%

MDDs Boost Equation Solving on Discrete Dynamical Systems - Formenti, Régin, Riva. (CPAIOR 2021) 14



THE BASIC EQUATION 𝐶78⊙ 𝑋̇ = 𝐶9:

𝐶(!⊙𝐶6
7 = 𝐶89,((,6)

7⋅4.5 (,6

𝑝, 𝑛, 𝑞 ∈ ℕ ∖ {0}
EnumSOBFID

Problem
⊕Solutions

According to the product rule:

A divisor r of q is in the coins system iff:

𝑝, 𝑛, 𝑞 ∈ ℕ ∖ {0}
$ coins system,

𝑛 total
Change-Making
Problem

CMP	
Solutions ⊕Solutions

𝑟 ≤ 𝑛 and 𝑔𝑐𝑑 𝑝,
𝑞
𝑝 ⋅ 𝑟 = 𝑟 and 𝑙𝑐𝑚 𝑝,

𝑞
𝑝 ⋅ 𝑟 = 𝑞
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SB-MDDS (SYMMETRY BREAKING)

r

2 1

4 3 2

5 4 3

5 5

5

tt

2 1

112 2

221 1 1

2 1

1 1

2

2

2
1

1
1

r

2 1

4 3 2

5 4 3

5 5

5

tt

2 1

112

1 1 1

2 1

1 1

1

1
1

𝐶"!⊙ 𝑋̇ = 𝐶:: $ = 2,1 , 𝑛 = 6 SB−MDD𝑀",:,: ⊕𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

Reduced MDD VS Reduced SB-MDD

𝑟 →
𝑞
𝑝 ⋅ 𝑟

𝐶pD⊕𝐶qD 16



THE MDD-BASED PIPELINE

Identification and resolution of the basic 
equations.

Necessary Equations

Explorations of the feasible solutions space.

Contractions Steps

Intersections and Unions to study the solutions of 
each contraction step.

Identification of the solutions

Algorithmic technique to compute the roots over 
DDSs.

W-th Roots

%
!"#

$!

𝐶%!"
&!" ⊙ 𝑥̇#

'! ⊕ %
!"#

$#

𝐶%#"
&#" ⊙ 𝑥̇(

'# ⊕⋯⊕ %
!"#

$$

𝐶%$"
&$" ⊙ 𝑥̇)

'$ =%
*"#

+

𝐶%%
&%
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MDDS & CONTRACTIONS STEPS

𝐶𝑆 =×VW8X 𝐶𝑆V

r

tt

…

For each node of a level 𝑧, the value 𝑘 is 
a possible label of an outgoing arc if

𝑀(),(%,
*
+)

has solution.

For each monomial there is one 
level into the structure + one 
level for the final node. 

The structure represents the 
generation of the 𝑪𝒑𝒋

𝒏𝒋 cycles.
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EXAMPLE

¡ 33 Basic equations

¡ 27 Necessary equations

¡ Contractions steps CS

𝐶Y8⊙ 𝑋̇⊕ 𝐶Z8 ⊙ 𝑋̇ = 𝐶ZY⊕𝐶YY⊕𝐶[\⊕𝐶8Z\

𝐶;9 ⊙ 𝑋̇ = 𝐶F9

𝐶;9 ⊙ 𝑋̇ = 𝐶F>

𝐶;9 ⊙ 𝑋̇ = 𝐶9;9

𝐶;9 ⊙ 𝑋̇ = 𝐶9;>

𝐶;9 ⊙ 𝑋̇ = 𝐶9;G

𝐶;9 ⊙ 𝑋̇ = 𝐶9;H

r tt
0 4

4
2

0

0
2

4

0 7

7
5

3
1

0

2

4
6
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THE MDD-BASED PIPELINE

Identification and resolution of the basic 
equations.

Necessary Equations

Explorations of the feasible solutions space.

Contractions Steps

Intersections and Unions to study the solutions of 
each contraction step.

Identification of the solutions

Algorithmic technique to compute the roots over 
DDSs.

W-th Roots

%
!"#

$!

𝐶%!"
&!" ⊙ 𝑥̇#

'! ⊕ %
!"#

$#

𝐶%#"
&#" ⊙ 𝑥̇(

'# ⊕⋯⊕ %
!"#

$$

𝐶%$"
&$" ⊙ 𝑥̇)

'$ =%
*"#

+

𝐶%%
&%
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SOLVE A CONTRACTIONS STEP

Each path into 
CS is a feasible 
contractions 

step

Set of SB-MDDs Same monomials Cartesian Product

Same variableIntersection

r tt
0 4

4
2

0

0
2

4

0 7

7
5

3
1

0

2

4

6

𝐶;9 ⊙ 𝑋̇ = 𝐶;F⊕𝐶IH

𝐶;9 ⊙ 𝑋̇ = 𝐶;F⊕𝐶IH

𝐶F9 ⊙ 𝑋̇ = 𝐶FF⊕𝐶9;H 21



INTERSECTION OF SB-MDDS

Set of SB-
Cartesian MDDs

Classic Intersection 
Set of candidate 

solutions
SB-Cartesian 
Intersection

Intersection 
result

r
1

1 3

3

2

1

3

tt

1

1

1

r
1

1 2
2

2 3
1 1

3

tt

1

1

1

3

3

1

2

4

r
1

1 3

3

2

1

3

tt

1

1

1

∩ =

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2 1

2

2

3

3

3 → 𝐶#!
2 → 𝐶"!
1 → 𝐶!!

2 → 𝐶=!

Example: [2,2,2,1,1,1,1] 

!! The coins 𝑐-, 𝑐. are 
considered equals only if 

r

𝑐# → 𝐶,#, 𝑐( → 𝐶)# 𝑎𝑛𝑑 𝑟 = 𝑠
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THE MDD-BASED PIPELINE

Identification and resolution of the basic 
equations.

Necessary Equations

Explorations of the feasible solutions space.

Contractions Steps

Intersections and Unions to study the solutions of 
each contraction step.

Identification of the solutions

Algorithmic technique to compute the roots over 
DDSs.

W-th Roots

%
!"#

$!

𝐶%!"
&!" ⊙ 𝑥̇#

'! ⊕ %
!"#

$#

𝐶%#"
&#" ⊙ 𝑥̇(

'# ⊕⋯⊕ %
!"#

$$

𝐶%$"
&$" ⊙ 𝑥̇)

'$ =%
*"#

+

𝐶%%
&%
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W-ROOTS OVER CYCLES

Consider that some components 𝐶>!
$! ⊕⋯⊕𝐶>"

$" of 𝑥̇ have been already computed (with 2 < 𝑖 < 𝑙). 

(𝐶>!
$!⊕⋯⊕𝐶>"

$")* = 𝐶(!/
,!
/
⊕𝐶(#/

,#
/
⊕⋯⊕𝐶(0/

,0
/

with 𝑖 ≤ 𝑡 ≤ ℎ. It holds that 

𝑞%?! is min{𝑝+ ∈ {𝑝!, … , 𝑝@}|𝑝+ > 𝑞% ⋀ ((𝑝+ = 𝑝6A ⋀ 𝑚6
A < 𝑚+) with 𝑧 ∈ {1, … , 𝑡} ⋁ 𝑝+ ∉ {𝑝!A , … , 𝑝BA})}

𝑥̇* = 𝐶(!
,! ⊕𝐶(#

,# ⊕⋯⊕𝐶(1
,1 𝑥̇ = 𝐶>!

$! ⊕𝐶>#
$# ⊕⋯⊕𝐶>2

$2

!

(0 < 𝑝# < 𝑝( < … < 𝑝-)

𝑠%?!integer solution of :
𝒌𝟏/𝒌𝟐/⋯/𝒌𝒊)𝟏"𝒘
𝟎3𝒌𝟏 ,𝒌𝟐 ,…,𝒌𝒊)𝟏3𝒘

𝒍(𝒒𝟏 ,…,𝒒𝒊)𝟏 ,𝒌𝟏 ,…,𝒌𝒊)𝟏)"𝒒𝒊)𝟏

𝒘
𝒌𝟏, 𝒌𝟐, … , 𝒌𝒊/𝟏

=
𝒕"𝟏
𝒌𝒕>𝟎

𝒊/𝟏

𝒒𝒕
𝒌𝒕?𝟏𝒔𝒕

𝒌𝒕 =
𝒕"𝟐
𝒌𝒕>𝟎

𝒊/𝟏

𝐠𝐜𝐝 𝒍 𝒒𝟏, … , 𝒒𝒕?𝟏, 𝒌𝟏, … , 𝒌𝒕?𝟏 , 𝒒𝒕 = 𝒎𝒋
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THE MDD-BASED PIPELINE

Identification and resolution of the basic 
equations.

Necessary Equations

Explorations of the feasible solutions space.

Contractions Steps

Intersections and Unions to study the solutions of 
each contraction step.

Identification of the solutions

Algorithmic technique to compute the roots over 
DDSs.

W-th Roots

%
!"#

$!

𝐶%!"
&!" ⊙ 𝑥̇#

'! ⊕ %
!"#

$#

𝐶%#"
&#" ⊙ 𝑥̇(

'# ⊕⋯⊕ %
!"#

$$

𝐶%$"
&$" ⊙ 𝑥̇)

'$ =%
*"#

+

𝐶%%
&%
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ABSTRACTION OVER THE TRANSIENT BEHAVIOUR

¡ Considering the abstraction over cycles, we showed that to solve the 
abstraction it is necessary to solve two basic cases:

¡ Also if we consider the transient parts involved in the initial equation 
we are interested in these simple cases.

𝑋C = 𝑐

𝛼 ⋅ 𝑋 = 𝑐
with α, 𝑐 that are DDS and X with a possible cyclic behaviour.

𝛼 ⋅ 𝑋 = 𝑐
Asymptotic 
behaviour

Set of 
states

Transient 
behaviour
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OUR IDEA
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CONCLUSIONS

TWO DIFFERENT 
ABSTRACTIONS SOLVED 

+ ONE WORKING IN 
PROGRESS

A NEW MDD 
APPROACH COMPACT 

AND FASTER

A COMPLETE PIPELINE
TO SOLVE GENERIC 
EQUATIONS OVER 

CYCLES

A NEW ALGORITHM TO 
COMPUTE W-ROOTS
OVER THE LONG-TERM 

BEHAVIOUR



FUTURE 
DEVELOPMENTS

Parallel solutions computation

Improve the SB-Cartesian intersection

Test the approach over real biological networks

The abstraction over the transient parts of DDS

Interaction with different abstractions

∩
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