Dynamical systems and their algebra

 Antonio E. Porreca • aeporreca.org Université Publique, MarseilleWorkshop on Automata Network • WAN 2021
CIRM, Marseille • 12-17 July 2021

Main idea

"If you liked it then you shoulda put a semiring on it"

Beyoncé Knowles, "Single Ladies (Put a Semiring on It)" In: Beyoncé Knowles, Mathew Knowles (exec. prod.)
I Am... Sasha Fierce, Columbia Records, 2008
https://youtu.be/4m1EFMoRFvY

General shape of a dynamical system

 A few limit cycles with trees going in

Isomorphism of dynamical systems Not a problem, from a complexity perspective

2009 24th Annual IEEE Conference on Computational Complexity
Samir Datta* ${ }^{*}$, Nutan Limaye ${ }^{\dagger}$, Prajakta Nimbhorkar ${ }^{\dagger}$, Inennai Mathematical Institute
Email: sdatta@cmi.ac.in
\dagger The Institute of Mathematical Scims.res.in
Email: \{nutan, prajakta\}@imsc.res.in Aalen
\ddagger Fakultät fuir Elektronik und Informail: thomas.thierauf@ui-ulm.de
Email: thomas. Informatik, Universität Ulm
§Institut für Theoretische Informatik, uni-de
Email: fabian.wagner@uni-ul

Abstract

Graph Isomorphism is the prime example of a computational problem with a wide difference between the bemplexity. There is known lower and upper bounds on lower and upper bounds for a significant gap between extant lowe gap for this natural planar graphs as well. We bridge thesenting an upper bound and important special case by pace hardness [JKMT03]. In

The problem is clearly in NP and by a group theoretic proof also in SPP [AK06]. This is the current inability to our knowledge as far as upper bounds go. would lead one give efficient algorithms for the provably hard. NP-hardness to believe that the problem is ptates if GI is NP-hard then is precluded by a result that collapses to the second level the polynomial time hierarchy collapses surprising is that not even [BHZ87], [Sch88]. What is more problem. The best we know P -hardness is known for the problem. The class of problems is that GI is hard for Determinant, defined by Cook [Coo85].

Product is graph tensor product

 Synchronous execution of two systems

Product in D is graph tensor product

Temporary state names

Product in D is graph tensor product

 Cartesian product of the states

Product in D is graph tensor product

 Arrows iff arrows between both components

Product in D is graph tensor product

 We forget the state names once again

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

more precisely: a connected A is a minor of each connected component of $A \times B$ for $B \neq 0$

No unique factorisation (6)

Multiplication table

\times	\varnothing	¢			\because.		
\varnothing							
\bigcirc	\varnothing	\bigcirc		${ }^{\text {c }}$	\because.		
\bigcirc	\varnothing						
$¢^{\text {¢ }}$	\varnothing	$\square^{\text {c }}$			\cdots		
\because	\varnothing	\because					
0	\varnothing						

Polynomial equations

Polynomial equations over D

For the analysis of complex systems

- Consider the equation

- There is least one solution

$$
x=6
$$

Undecidability of polynomial equations

\mathbb{N} is a subsemiring of \mathbf{D}

This means trouble

- There is an injective homomorphism $\varphi: \mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{\mathbf{1}+\mathbf{1}+\cdots+\mathbf{1}}_{n \text { times }}=\underbrace{\bigodot_{\bullet}+\bigodot_{\bullet}+\cdots+\bigodot_{\bullet}}_{n \text { times }}
$$

- n fixed points behave exactly as the integer n
- So \mathbf{D} contains a isomorphic copy of \mathbb{N}

Hilbert's 10th problem over D

Unsolvability of polynomial equations

- If a multivariate polynomial equation over \mathbb{N} has a solution in \mathbf{D}, then it also has a solution in \mathbb{N} (just replace each system by its size!)
- In the larger semiring \mathbf{D} we may find extra solutions, but only if the equation is already solvable over the naturals
- Then, by reduction from Hilbert's 10th problem, we obtain the undecidability in \mathbf{D} of polynomial equations over \mathbb{N}...
- ...and thus of arbitrary equations over \mathbf{D}

Polynomial equations with constant RHS are decidable and in NP

Systems of linear equations with constant RHS are NP-complete

NP-hardness of linear systems By reduction from One-in-three-3SAT

- Given a 3CNF Boolean formula φ, is there a satisfying assignment such that exactly one literal per clause is true?
- For each variable x of φ we have one equation $X+X^{\prime}=1$, forcing one between X and X^{\prime} to be 1 , and the other to be 0
- For each clause, for instance ($x \vee \neg y \vee z$), we have one equation $X+Y^{\prime}+Z=1$, which forces exactly one variable to 1
- These are all linear, constant-RHS equations over \mathbf{D} and more specifically over \mathbb{N}, and its solutions are the same as the satisfying assignments of φ with one true literal per clause

A single linear, constant-RHS equation is NP-complete*

* Main idea by Florian Bridoux, bravo !

D is a \mathbb{N}-semimodule
 Like a vector space, but over a semiring

- Here the vectors are dynamical systems and the scalars are naturals
- Trivial because the semimodule axioms are a consequence of \mathbb{N} being a subsemiring of \mathbf{D}
- D as a semimodule has a unique, countably infinite basis consisting of all nonempty, connected dynamical systems

Reducing the system of equations to one

Several $\mathbb{N}[\vec{X}]$ linear equations to one $\mathbf{D}[\vec{X}]$ equation

- Let $p_{1}(\vec{X})=1, \ldots, p_{n}(\vec{X})=1$ be the previous system of equations, with $p_{i} \in \mathbb{N}[\vec{X}]$
- Take any n easy-to-compute, linearly independent systems $e_{1}, \ldots e_{n} \in \mathbf{D}$, for instance

- Then the equation $e_{1} p_{1}(\vec{X})+\cdots+e_{n} p_{n}(\vec{X})=e_{1}+\cdots+e_{n}$ is a linear equation over $\mathbf{D}[\vec{X}]$ having the same solutions as the original system

Linear, constant-RHS eqns are NP-complete Even equations over cycles, even in explicit form!

Reducing the system of equations to one
Several $\mathbb{N}[\vec{X}]$ linear equations to one $D[\vec{X}]$ equation

- Let $p_{1}(\vec{X})=1, \ldots, p_{n}(\vec{X})=1$ be the previous system
of equations, with $p_{i} \in \mathbb{N}[\vec{X}]$
- Recall that \mathbf{D} is a \mathbb{N}-semimodule with basis all connected systems
- Take any n easy-to-compute, linearly independent systems $e_{1}, \ldots e_{n} \in \mathbf{D}$, for instance $e_{1}=p$

$$
e_{3}=\sigma_{0}^{0}
$$

- Then the equation $e_{1} p_{1}(\vec{X})+\cdots+e_{n} p_{n}(\vec{X})=e_{1}+\cdots+e_{n}$

$$
e_{2}=0
$$

$$
e_{4}=
$$ is a linear equation over $\mathbf{D}[\overrightarrow{\mathrm{X}}]$ having the same solutions as the original system

Irreducible systems

Most dynamical systems are irreducible

A is irreducible iff $A=B C$ implies $B=1$ or $C=1$

- Formally:

- Notice that this is the opposite of \mathbb{N}, where irreducible (aka prime) integers are scarce)

Prime system

Prime system
 $P \neq 0,1$ is prime iff $P \mid A B$ implies $P \mid A$ or $P \mid B$

- If a prime P appears in a factorisation into irreducibles of a system, then it appears in all factorisations
- On the contrary, non-prime systems can sometimes be replaced
- So prime systems are irreplaceable building blocks
- We don't know if prime systems exist yet!
- But we know several nonprimes, for instance

More interesting classes of nonprimes Work by Johan Couturier, bien joué !

- If A is disconnected, then A is not prime
- If A is connected but of period >1, then A is not prime
- If A is connected of period 1 , but

$$
\operatorname{gcd}(A)=\operatorname{gcd}\{\# \text { preimages of } a: a \in A\}>1
$$

then A is not prime

- In particular, systems consisting of sums of cycles (i.e., the asymptotic behaviours of any system) are nonprime

Is primality decidable? Most. Annoying. Open. Problem. Ever. :()

- We do not know an algorithm for primality testing!
- Nonprimes are recursively enumerable
- Enumerate systems A, B to find a counterexample to the primality of P, i.e., $P \mid A B$ but $P+A$ and $P+B$
- No known way to bound the size of counterexamples
- Fun fact: if primality is undecidable, then primes do exist (:)

Open problems

Open problems

Algebraic ones

- Do prime systems exist at all? Is primality decidable?
- Is this particular guy here prime? $\bigcirc \rightarrow \rightarrow$
- What is the complexity of deciding if $A \mid B$? And deciding if A is irreducible?
- Does it make any sense to adjoin the additive inverses in order to obtain a ring?
- Is it useful to find nondeterministic dynamical system (i.e., arbitrary graph) solutions to equations?
- Semirings of infinite discrete-time dynamical systems

Open problems

Solving equations

- Find larger classes of solvable equations, e.g., by number of variables or degree of the polynomials
- Discover classes of equations solvable efficiently
- Probably very hard for systems in succinct form
- Find out if there exist decidable equations harder than NP
- It would feel strange to jump from NP to undecidable

Thanks for your attention! Merci de votre attention!

Any questions?

