On the simulation notion

Pierre Guillon with Guilhem Gamard, Kévin Perrot,
Pacôme Perrotin, Sylvain Sené, Guillaume Theyssier

CNRS, Marseille

A controversial concept

A controversial concept

Main idea

A simulates B if A can perform the stuff that B can perform.

Main idea

A simulates B if A can perform the stuff that B can perform.

Main idea

A simulates B if A can perform the stuff that B can perform.

useful:
If A simulates B, then A is at least as complex as B.

Essential subsystem

dynamical system: a phase space X and a self-map $F: X \rightarrow X$.

Factor

Factor

Subsystem \perp Factor [Theyssier 05,G.-Meunier-Theyssier 10]

Multiple steps

Multiple steps

variant: also make multiple steps in the simulated side [Rapaport 98, Ollinger 02,Theyssier 05]

Multiple steps

variant: also make multiple steps in the simulated side [Rapaport 98, Ollinger 02,Theyssier 05]

Nondeterminism

Nondeterminism

dynamical system: graph $\left(V, E \subset V^{2}\right)$.
e.g.: nondeterministic Turing machine

Nondeterminism

dynamical system: graph $\left(V, E \subset V^{2}\right)$.
e.g.: nondeterministic Turing machine

Labeled nondeterminism

Labeled nondeterminism

dynamical system: graph
$\left(V, E \subset V^{2} \times \Sigma\right)$, with $|\Sigma|<\infty$.
e.g.:

- BAN endowed with activation of
 each automaton (or most permissive)

Labeled nondeterminism

dynamical system: graph

$$
\left(V, E \subset V^{2} \times \Sigma\right)
$$

with $|\Sigma|<\infty$.

e.g.:

- BAN endowed with activation of each automaton (or most permissive)
- tilings endowed with right and up shifts

Labeled nondeterminism

dynamical system: graph

$$
\left(V, E \subset V^{2} \times \Sigma\right)
$$

with $|\Sigma|<\infty$.

e.g.:

- BAN endowed with activation of each automaton (or most permissive)
- tilings endowed with right and up shifts
- 1D configurations endowed with a CA action and shift

Labeled nondeterminism

dynamical system: graph

$$
\left(V, E \subset V^{2} \times \Sigma\right)
$$

with $|\Sigma|<\infty$.

e.g.:

- BAN endowed with activation of each automaton (or most permissive)
- tilings endowed with right and up shifts
- 1D configurations endowed with a CA action and shift
- group actions...

Different models

X and Y need not be the same space
e.g. simulation of Turing machines by piecewise-affine maps

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
shortcut: a path $\left(u_{0}, u_{1}, a_{0}\right),\left(u_{1}, u_{2}, a_{1}\right), \ldots,\left(u_{I-1}, u_{I}, a_{I-1}\right)$ is replaced by new age $\left(u_{0}, u_{l}, a_{0} a_{1} \ldots a_{l-1}\right)$

$$
u_{0}-u_{1}-u_{2}-u_{3} \rightarrow u_{4}
$$

$E^{<*>}$: set of shortcuts
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : right-inverse of Π.

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
shortcut: a path $\left(u_{0}, u_{1}, a_{0}\right),\left(u_{1}, u_{2}, a_{1}\right), \ldots,\left(u_{I-1}, u_{I}, a_{I-1}\right)$ is replaced by new age $\left(u_{0}, u_{l}, a_{0} a_{1} \ldots a_{l-1}\right)$

$E^{<*>}$: set of shortcuts
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into (V^{\prime}, E^{\prime});
- χ : right-inverse of Π.

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : right-inverse of Π.

Pick your favorite extra constraints (model-dependent):

- nice $V^{\prime} \subset V$ (e.g. $V=V_{1} \times V_{2}$ and $\left.V^{\prime}=V_{1} \times\{0\}\right)$

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : right-inverse of Π.

Pick your favorite extra constraints (model-dependent):

- nice $V^{\prime} \subset V$ (e.g. $V=V_{1} \times V_{2}$ and $\left.V^{\prime}=V_{1} \times\{0\}\right)$
- nice $E^{\prime} \subset E^{<*>}$ (e.g. constant length shortcuts, label subalphabet, \sim regular [Salo-Bartholdi 20])

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : right-inverse of Π.

Pick your favorite extra constraints (model-dependent):

- nice $V^{\prime} \subset V$ (e.g. $V=V_{1} \times V_{2}$ and $V^{\prime}=V_{1} \times\{0\}$)
- nice $E^{\prime} \subset E^{<*>}$ (e.g. constant length shortcuts, label subalphabet, \sim regular [Salo-Bartholdi 20])
- nice Π (e.g. computable / polynomial-time / CA)

A definition

dynamical system: edge-labeled graph $\left(V, E \subset V^{2} \times \Sigma\right)$
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: subgraph of $\left(V, E^{<*>}\right)$;
- Π : epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : right-inverse of Π.

Pick your favorite extra constraints (model-dependent):

- nice $V^{\prime} \subset V$ (e.g. $V=V_{1} \times V_{2}$ and $V^{\prime}=V_{1} \times\{0\}$)
- nice $E^{\prime} \subset E^{<*>}$ (e.g. constant length shortcuts, label subalphabet, \sim regular [Salo-Bartholdi 20])
- nice Π (e.g. computable / polynomial-time / CA)
- nice χ

Topology

Let $\Phi:\{0,1\}^{\mathbb{Z}} \rightarrow \mathbb{R}$ a bijection, and $F:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$. Then $\left(\mathbb{R}, \Phi F \Phi^{-1}\right) \succeq\left(\{0,1\}^{\mathbb{Z}}, F\right)$

Topology

Let $\Phi:\{0,1\}^{\mathbb{Z}} \rightarrow \mathbb{R}$ a bijection, and $F:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$. Then $\left(\mathbb{R}, \Phi F \Phi^{-1}\right) \succeq\left(\{0,1\}^{\mathbb{Z}}, F\right) \ldots$ unless we consider topology:
dynamical system: graph $\left(V, E \subset V^{2} \times \Sigma\right)$, with V compact space, and E compact (for product and discrete topology).

Topology

dynamical system: graph $\left(V, E \subset V^{2} \times \Sigma\right)$, with V compact space, and E compact (for product and discrete topology).
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z: compact subgraph of $\left(V, E^{<*>}\right)$;
- Π : continuous epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : continuous right-inverse of Π.

Topology

dynamical system: graph $\left(V, E \subset V^{2} \times \Sigma\right)$, with V compact space, and E compact (for product and discrete topology).
simulation of $\left(V^{\prime}, E^{\prime}\right)$ by $(V, E):(Z, \Pi, \chi)$ where:

- Z : compact subgraph of $\left(V, E^{<*>}\right)$;
- Π : continuous epimorphism from Z into $\left(V^{\prime}, E^{\prime}\right)$;
- χ : continuous right-inverse of Π.
in tiling simulation: continuous \Longrightarrow nice $(\sim \mathrm{CA})$

in Automata Networks

in Automata Networks

$$
\begin{aligned}
& \begin{array}{ccc}
f & & g \\
1 \leftrightarrow 2 & & 1 \leftarrow 2 \leftarrow 3 \\
& & 2 \overleftarrow{3}^{3} 1 \\
x & g^{3}(x) & g^{3,1}(x) g^{1,2,3}(x)
\end{array} \\
& \square \square \longrightarrow \square \square \square \square \square \square \\
& \varphi \circ g^{w}=f \circ \varphi \\
& \text { प——————————— }
\end{aligned}
$$

Monotonicity of complexity

Metatheorem: Consider a notion C of complexity. If (Z, Π, χ) is a simulation of a Y by X, then:

$$
C(Y) \leq C(X)+C(Z)+C(\Pi)+C(\chi)
$$

Proof.
Compute Y by computing X and the simulation.

Monotonicity of complexity

Metatheorem: Consider a notion C of complexity. If (Z, Π, χ) is a simulation of a Y by X, then:

$$
C(Y) \leq C(X)+C(Z)+C(\Pi)+C(\chi)
$$

Proof.
Compute Y by computing X and the simulation.
e.g. P- or NP-completeness, Π_{1}^{0} - or Σ_{3}^{0}-completeness. . .

Conclusion

- broad notion

Conclusion

- broad notion
- useful for complexity inheritance

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ
- computation literature: computational refinements (relate to circuit embeddings, universalities...)

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ
- computation literature: computational refinements (relate to circuit embeddings, universalities. . .)
- dynamics literature: set-theoretical / topological refinements (relate to substitutions, orbit equivalence, cocycles...)

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ
- computation literature: computational refinements (relate to circuit embeddings, universalities. . .)
- dynamics literature: set-theoretical / topological refinements (relate to substitutions, orbit equivalence, cocycles...)
- refinement \rightarrow bound on the simulation complexity

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ
- computation literature: computational refinements (relate to circuit embeddings, universalities...)
- dynamics literature: set-theoretical / topological refinements (relate to substitutions, orbit equivalence, cocycles...)
- refinement \rightarrow bound on the simulation complexity
- refinement relevance: model-dependent, question-dependent, subjective...

Conclusion

- broad notion
- useful for complexity inheritance
- natural refinements over Z, Π, χ
- computation literature: computational refinements (relate to circuit embeddings, universalities...)
- dynamics literature: set-theoretical / topological refinements (relate to substitutions, orbit equivalence, cocycles...)
- refinement \rightarrow bound on the simulation complexity
- refinement relevance: model-dependent, question-dependent, subjective...

Homework:
Take the simulation implicit in your last article.
Which constraints does it satisfy in the big framework?
Which constraints were needed to prove the targetted result?

