On simulation in Automata Networks

Florian Bridoux, Université Aix-Marseille, LIS
Maximilien Gadouleau, Durham University (UK) Guillaume Theyssier, Université Aix-Marseille, I2M

Written version

- On simulation in Automata Networks, 2020, CIE'20, Florian Bridoux, Maximilien Gadouleau, Guillaume Theyssier

Introduction

How do you compute the swap function $(a, b) \mapsto(b, a)$ updating one register at the time? Solutions:

- With additional registers:
- $c \leftarrow a$
- $a \leftarrow b$
- $b \leftarrow c$

$$
(a, b, c) \rightarrow(a, b, a) \rightarrow(b, b, a) \rightarrow(b, a, a)
$$

- A memoryless solution:
- $a \leftarrow a \oplus b$
- $b \leftarrow a \oplus b$.
- $a \leftarrow a \oplus b$

$$
\begin{aligned}
& (a, b) \rightarrow(a \oplus b, a) \rightarrow(a \oplus b, a \oplus a \oplus b)=(a \oplus b, a) \rightarrow \\
& (a \oplus b \oplus a, a)=(b, a) .
\end{aligned}
$$

Related results

Question: memoryless solution in general
Can you compute any function $h: \mathbb{A}^{n} \mapsto \mathbb{A}^{n}$ updating one register at the time without additional registers?

Theorem: Memoryless computation: new results, constructions, and extensions, 2015, Gadouleau M. and Riis S.
For all functions $h: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$, there are $m \leq 4 n-3$ functions $g^{(1)}, \ldots, g^{(m)}$ such that:

- $h=g^{(m)} \circ \cdots \circ g^{(1)}$
- each $g^{(i)}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is an instruction (i.e. modifies a single register).

If h is bijective, we have $m \leq 2 n-1$ (optimal for $h=\left(0^{n}\right) \leftrightarrow\left(1^{n}\right)$).

Question

What happens if we always update the i-th register with the same function $f^{(i)}$?

Automata Networks: our definition

Definition: Automata networks

$f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ with \mathbb{A} a finite alphabet.
$\mathrm{F}(n, q)$: Set of automata networks of size n and alphabet size q

$$
\mathrm{F}(n, q)=\left\{f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n} \mid \mathbb{A}=\{0, \ldots, q-1\}\right\}
$$

f can be seen as n local functions $f_{i}: \mathbb{A}^{n} \rightarrow \mathbb{A}$ such that

$$
f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) \text { for all } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n}
$$

Sequential updates

Definition: sequential update $f^{(i)}$
For all $i \in[1, n], f^{(i)}: x \mapsto\left(x_{1}, \ldots, x_{i-1}, f_{i}(x), x_{i+1}, \ldots, x_{n}\right)$.
Definition: update schedule w
For all $w=w_{1} w_{2}, \ldots, w_{m} \in[1, n]^{*}, f^{w}=f^{\left(w_{m}\right)} \circ \ldots \circ f^{\left(w_{2}\right)} \circ f^{\left(w_{1}\right)}$.
Let $f \in \mathrm{~F}(m, q)$ and $g \in \mathrm{~F}(n, q)$ with $m \geq n$.
Definition: simulation
Let $w \in\{0,1\}^{*}, f \triangleright_{w} g$ iff $\varphi_{[1, n]} \circ f^{w}=g \circ \varphi_{[1, n]}$.
In particular, if $m=n, f \triangleright_{w}$ iff $f^{w}=g$.

- $f \triangleright g: \exists w \in\{0,1\}^{*}$ such that $f \triangleright_{w} g$
- $f \triangleright_{\text {seq }} g: \exists w \in \pi([1, m])$ such that $f \triangleright_{w} g$.

Previous results

Theorem: Sequentialization and Procedural Complexity in Automata Networks, submitted, Bridoux F.

- For all $g \in \mathrm{~F}(n, q), \exists f \in \mathrm{~F}\left(3 n / 2+\log _{q}(n), q\right)$ such that $f \triangleright_{\text {seq }} g$.
- For all $n, q \geq 4, \exists g \in \mathrm{~F}(n, q)$ such that if $f \in \mathrm{~F}(m, q) \triangleright_{\text {seq }} g$ then $m \geq 3 / 2 n-\log _{q}(n)$.

Theorem: Complete Simulation of Automata Networks, 2020, Bridoux F., Castillo-Ramirez A., Gadouleau M.

For all $n, q, \exists f \in \mathrm{~F}(n+1, q)$ such that $f \triangleright \mathrm{~F}(n, q)$.
Let $\operatorname{Sym}=\{h \in \mathrm{~F}(n, q) \mid$ his bijective $\}$.
Theorem: Computing in permutation groups without memory, 2014, Cameron, P.J., Fairbairn, B., Gadouleau, M.
For all $n, q \neq 2,2, \exists f \in \mathrm{~F}(n, q)$ such that $f \triangleright \operatorname{Sym}(n, q)$.

Previous results

Theorem

For all $n \geq 2, q$, there is no $f \in \mathrm{~F}(n, q)$ such that $f \triangleright \mathrm{~F}(n, q)$.
Proof:

- If $f \triangleright \mathrm{~F}(n, q)$ then $f \triangleright_{w} g=\left(0^{n} \leftrightarrow 1^{n}\right)$ and $f \triangleright_{w^{\prime}}=\left(0^{n} \rightarrow 1^{n}\right)$ for some, $w, w^{\prime} \in[1, n]^{*}$.
- All registers $i \in[1, n]$ are updated in w. Indeed, if i is not updated in w, then $\left(f^{w}\left(0^{n}\right)\right)_{i}=0 \neq 1=g_{i}\left(0^{n}\right)$.
- Since $h=f^{w_{m}^{\prime}} \circ \cdots \circ f^{w_{2}^{\prime}} \circ f^{w_{1}^{\prime}}$ is not bijective then there exists w_{j} such that $f^{w_{j}}$ is not bijective.
- Taking $i=w_{j}, i$ is updated by w. Therefore $g=\cdots \circ f^{(i)} \circ \ldots$ is not bijective which is a contradiction.

Questions: simulation without memory

For all $g \in \mathrm{~F}(n, q)$, can you find $f \in \mathrm{~F}(n, q)$ such that $f \triangleright g$?

Questions: simulation without memory

For all $g \in \mathrm{~F}(n, q)$, can you find $f \in \mathrm{~F}(n, q)$ such that $f \triangleright g$?
For $n=q=2$, one can check that there are $26 h \in \mathrm{~F}(n, q)$ that cannot be simulated without memory. All are symmetric to one of these 4:

Cases where $q \geq 3$

Theorem

For all $q \geq 3, n \geq 2, \exists g \in \mathrm{~F}(n, q)$ that cannot be simulated by a function $f \in \mathrm{~F}(n, q)$.

- For any $n \geq 2$, let $g=\left(120^{n-2} \rightarrow 10^{n-1} \rightarrow 010^{n-2} \rightarrow 0^{n}\right)$. We will prove that g is not simulated by any $f \in \mathrm{~F}(n, q)$. Transition digraph for $n=2$:

Cases where $q \geq 3$: idea of proof

- We have $g=(d \rightarrow c \rightarrow b \rightarrow a)$.
- Suppose that there is $f \in \mathrm{~F}(n, q)$ such that $f \triangleright_{w} g$.
- One can prove that there exists 4 distinct configurations $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ equals to a, b, c, d on the second register such that $f^{(2)}=\left(d^{\prime} \rightarrow c^{\prime} \rightarrow b^{\prime} \rightarrow a^{\prime}\right)$.
- Since $f^{(2)}$ updates only the register 2 , we have $a_{1}^{\prime}=b_{1}^{\prime}=c_{1}^{\prime}=d_{1}^{\prime}$.
- Since $a_{2}^{\prime}=c_{2}^{\prime}$ and $a_{1}^{\prime}=c_{1}^{\prime}, a^{\prime}=c^{\prime}$ which is a contradiction.

Cases where $q=2$

Result

For all $n=3, q=2$, for all $g \in \mathrm{~F}(n, q)$ there exists $f \in \mathrm{~F}(n, q)$ such that $f \triangleright g$.

We check this result by computer. The program uses brute force:

- Take all $f \in \mathrm{~F}(n, q)$ (there are 16777216).
- Compute the bigger S_{f} such that $f \triangleright S_{f}$.
- Check that the unions of all the S_{f} is $\mathrm{F}(n, q)$.
- (you can save some computation time using symmetries)

Conjecture:

For all $n \geq 3, q=2$, for all $g \in \mathrm{~F}(n, q)$ there exists $f \in \mathrm{~F}(n, q)$ such that $f \triangleright g$.

Simulations with larger alphabet

Consider $f \in \mathrm{~F}\left(n, q^{\prime}\right)$ and $g \in \mathrm{~F}(n, q)$ with $q^{\prime}>q$.

Question?

What does it means for f to simulates g ?
Let $\mathbb{A}=\{0, \ldots, q-1\}$ and $\mathbb{B}=\left\{0, \ldots, q^{\prime}-1\right\}$, we have $\mathbb{A} \subseteq \mathbb{B}$. Let $\varphi: \mathbb{B} \mapsto \mathbb{A}$ be surjective and let $\varphi: x \mapsto\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)$.
by factor:

$\varphi \circ f^{w}=g \circ \varphi$
for some $w \in[1, n]^{*}$.
by initialization:

$\forall x \in \mathbb{A}^{n}, f^{w}(x)=g(x)$ for some $w \in[1, n]^{*}$.

Simulations by factor: Results

Let $\mathbb{A}=\{0, \ldots, q-1\}$ and $\mathbb{B}=\left\{0, \ldots, q^{\prime}-1\right\}$, we have $\mathbb{A} \subseteq \mathbb{B}$. Let $\varphi: \mathbb{B} \mapsto \mathbb{A}$ be surjective and let $\varphi: x \mapsto\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)$.

Theorem

For any $q \geq 2$ and $n \geq 3$, there exists $f \in \mathrm{~F}(n, 2 q)$ which simulates all $\mathrm{F}(n, q)$ by factor.

Simulations by factor: proof (sketch)

Decompose $z \in \mathbb{B}^{n}$ as $x \in \mathbb{A}^{n}$ and $y \in\{0,1\}^{n}$.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

Simulations by factor: proof (sketch)

Decompose $z \in \mathbb{B}^{n}$ as $x \in \mathbb{A}^{n}$ and $y \in\{0,1\}^{n}$.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
y_{1}	y_{2}	y_{3}			

- f realizes distinct transformations of x depending on the controlling states $\left(y_{1}, y_{2}, y_{3}\right)$.
- In particular, we can realizes:
- a circular permutation c of \mathbb{A}^{n} with $1,2,2,1,3,4, \ldots, n$.
- the transposition $k=\left(0^{n} \leftrightarrow 10^{n-1}\right)$ with $2,1,1$.
- the assignment $d=\left(0^{n} \rightarrow 10^{n-1}\right)$ with $2,1,2,1$.
- We can generate $\mathrm{F}(n, q)$ by combinations of these operations.
 synchronization word $\left((3)^{q}, 2,3,1,1,2,1,3\right)$ to put it in the state 101 without modifying x.

Simulations by initialization: Results

by initialization:

$$
\begin{aligned}
& \forall x \in \mathbb{A}^{n}, f^{w}(x)=g(x) \\
& \text { for some } w \in[1, n]^{*} .
\end{aligned}
$$

Theorem

For all n, q with $n \geq 3 q, \exists f \in \mathrm{~F}(n, q+1)$ such that such that f simulates all $\mathrm{F}(n, q)$ by initialization.

Simulations by initialization: proof (sketch)

- Same principle: we want to use the bigger alphabet to encode 3 bits y_{1}, y_{2}, y_{3} which will serve as controlling state.
- This time, the controlling state is initialized but its enconding is more complex.
Let $q=3, n=3 q$. We have $\mathbb{A}=\{0,1,2\}$ and $\mathbb{B}=\{0,1,2,3\}$.
Let $x=(0,1,2,2,1,2,0,0,0)$.
- If $y_{1}=0$ then $z_{1, \ldots q}=x_{0, \ldots, q}$. Example with $y=(0,0,0)$.

$z=$| 0 | 1 | 2 | 2 | 1 | 2 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- If $y_{1}=1$ then $z_{i+1}=q$ with $i=x_{1}+\ldots x_{q}(\bmod q)$. Example with $y=(1,1,1)$, we have $i_{1}=0+1+2=0$, $i_{2}=2+1+2=2$ and $i_{3}=0+0+0=0$.

$z=$| 3 | 1 | 2 | 2 | 1 | 3 | 3 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Simulations by initialization: proof (sketch)

The construction is similar to the one used for the simulations by factor:

- f realizes distinct transformations of x depending on the controlling states $\left(y_{1}, y_{2}, y_{3}\right)$.
- Thanks to this transformation, f can simulate all $\mathrm{F}(n, q)$.
- Additional difficulty: for technical reasons, if we have a transition $y_{1} y_{2} y_{3} \rightarrow \overline{y_{1}} y_{2} y_{3}$ then there is no transition $\overline{y_{1}} y_{2} y_{3} \rightarrow y_{1} y_{2} y_{3}$.

Conclusion

- Take away:
- It is possible to simulate all $\mathrm{F}(n, q)$ by factor by an AN $f \in \mathrm{~F}(n, 2 q)(n \geq 3)$.
- It is possible to simulate all $\mathrm{F}(n, q+1)$ by initialization by an AN $f \in \mathrm{~F}(n, q+1)(n \geq 3 q)$.
- For any $q \geq 3, n \geq 2$, there exists $g \in \mathrm{~F}(n, q)$ which is not simulated by any $f \in \mathrm{~F}(n, q)$.
- Conversely, all $g \in F(3,2)$ can be simulated by a $f \in F(3,2)$.
- Open question: What happens in the Boolean case for $n \geq 4$?

Conclusion

- Take away:
- It is possible to simulate all $\mathrm{F}(n, q)$ by factor by an AN $f \in \mathrm{~F}(n, 2 q)(n \geq 3)$.
- It is possible to simulate all $\mathrm{F}(n, q+1)$ by initialization by an AN $f \in \mathrm{~F}(n, q+1)(n \geq 3 q)$.
- For any $q \geq 3, n \geq 2$, there exists $g \in \mathrm{~F}(n, q)$ which is not simulated by any $f \in \mathrm{~F}(n, q)$.
- Conversely, all $g \in F(3,2)$ can be simulated by a $f \in F(3,2)$.
- Open question: What happens in the Boolean case for $n \geq 4$?

Thanks you for you attention.

