On simulation in Automata Networks

Florian Bridoux, Université Aix-Marseille, LIS Maximilien Gadouleau, Durham University (UK) Guillaume Theyssier, Université Aix-Marseille, I2M • On simulation in Automata Networks, 2020, CIE'20, Florian Bridoux, Maximilien Gadouleau, Guillaume Theyssier

How do you compute the swap function $(a, b) \mapsto (b, a)$ updating one register at the time? Solutions:

• With additional registers:

•
$$c \leftarrow a$$

• $a \leftarrow b$
• $b \leftarrow c$
(a, b, c) \rightarrow (a, b, a) \rightarrow (b, b, a) \rightarrow (b, a, a).

• A memoryless solution:

•
$$a \leftarrow a \oplus b$$

• $b \leftarrow a \oplus b$.
• $a \leftarrow a \oplus b$
(a, b) \rightarrow ($a \oplus b, a$) \rightarrow ($a \oplus b, a \oplus a \oplus b$) = ($a \oplus b, a$) \rightarrow
($a \oplus b \oplus a, a$) = (b, a).

Related results

Question: memoryless solution in general

Can you compute any function $h : \mathbb{A}^n \mapsto \mathbb{A}^n$ updating one register at the time without additional registers?

Theorem: *Memoryless computation: new results, constructions, and extensions, 2015, Gadouleau M. and Riis S.*

For all functions $h: \mathbb{A}^n \to \mathbb{A}^n$, there are $m \le 4n-3$ functions $g^{(1)}, \ldots, g^{(m)}$ such that:

•
$$h = g^{(m)} \circ \cdots \circ g^{(1)}$$

each g⁽ⁱ⁾: Aⁿ → Aⁿ is an instruction (*i.e.* modifies a single register).

If h is bijective, we have $m \leq 2n-1$ (optimal for $h = (0^n) \leftrightarrow (1^n)$).

Question

What happens if we always update the *i*-th register with the same function $f^{(i)}$?

Definition: Automata networks

 $f : \mathbb{A}^n \to \mathbb{A}^n$ with \mathbb{A} a finite alphabet.

F(n, q): Set of automata networks of size n and alphabet size q

$$\mathrm{F}(n,q) = \{f: \mathbb{A}^n \to \mathbb{A}^n \mid \mathbb{A} = \{0,\ldots,q-1\}\}.$$

f can be seen as n local functions $f_i : \mathbb{A}^n \to \mathbb{A}$ such that

$$f(x) = (f_1(x), \ldots, f_n(x))$$
 for all $x = (x_1, \ldots, x_n) \in \mathbb{A}^n$.

Definition: sequential update $f^{(i)}$

For all
$$i \in [1, n]$$
, $f^{(i)} : x \mapsto (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n)$.

Definition: update schedule w

For all
$$w = w_1 w_2, \ldots, w_m \in [1, n]^*$$
, $f^w = f^{(w_m)} \circ \cdots \circ f^{(w_2)} \circ f^{(w_1)}$.

Let
$$f \in F(m,q)$$
 and $g \in F(n,q)$ with $m \ge n$.

Definition: simulation

Let
$$w \in \{0,1\}^*$$
, $f \triangleright_w g$ iff $\varphi_{[1,n]} \circ f^w = g \circ \varphi_{[1,n]}$.

In particular, if m = n, $f \triangleright_w$ iff $f^w = g$.

•
$$f \triangleright g : \exists w \in \{0,1\}^*$$
 such that $f \triangleright_w g$

•
$$f \triangleright_{seq} g : \exists w \in \pi([1, m])$$
 such that $f \triangleright_w g$.

Previous results

Theorem: Sequentialization and Procedural Complexity in Automata Networks, submitted, Bridoux F.

- For all $g \in F(n,q)$, $\exists f \in F(3n/2 + \log_q(n), q)$ such that $f \triangleright_{seq} g$.
- For all $n, q \ge 4$, $\exists g \in F(n, q)$ such that if $f \in F(m, q) \triangleright_{seq} g$ then $m \ge 3/2n - \log_q(n)$.

Theorem: Complete Simulation of Automata Networks, 2020, Bridoux F., Castillo-Ramirez A., Gadouleau M.

For all $n, q, \exists f \in F(n+1, q)$ such that $f \triangleright F(n, q)$.

Let $Sym = \{h \in F(n, q) \mid h \text{ is bijective}\}.$

Theorem: Computing in permutation groups without memory, 2014, Cameron, P.J., Fairbairn, B., Gadouleau, M.

For all $n, q \neq 2, 2, \exists f \in F(n, q)$ such that $f \triangleright Sym(n, q)$.

Theorem

For all $n \ge 2, q$, there is no $f \in F(n, q)$ such that $f \triangleright F(n, q)$.

Proof:

- If $f \triangleright F(n,q)$ then $f \triangleright_w g = (0^n \leftrightarrow 1^n)$ and $f \triangleright_{w'} = (0^n \rightarrow 1^n)$ for some, $w, w' \in [1, n]^*$.
- All registers $i \in [1, n]$ are updated in w. Indeed, if i is not updated in w, then $(f^w(0^n))_i = 0 \neq 1 = g_i(0^n)$.
- Since $h = f^{w'_m} \circ \cdots \circ f^{w'_2} \circ f^{w'_1}$ is not bijective then there exists w_j such that f^{w_j} is not bijective.
- Taking $i = w_j$, i is updated by w. Therefore $g = \cdots \circ f^{(i)} \circ \ldots$ is not bijective which is a contradiction.

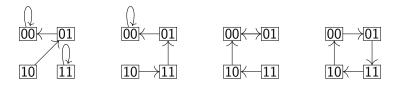
Questions: simulation without memory

For all $g \in F(n,q)$, can you find $f \in F(n,q)$ such that $f \triangleright g$?

Questions: simulation without memory

For all $g \in F(n,q)$, can you find $f \in F(n,q)$ such that $f \triangleright g$?

For n = q = 2, one can check that there are 26 $h \in F(n, q)$ that cannot be simulated without memory. All are symmetric to one of these 4:

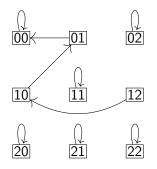


Cases where $q \ge 3$

Theorem

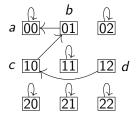
For all $q \ge 3$, $n \ge 2$, $\exists g \in F(n, q)$ that cannot be simulated by a function $f \in F(n, q)$.

• For any $n \ge 2$, let $g = (120^{n-2} \rightarrow 10^{n-1} \rightarrow 010^{n-2} \rightarrow 0^n)$. We will prove that g is not simulated by any $f \in F(n, q)$. Transition digraph for n = 2:



On simulation in Automata Networks

Cases where $q \ge 3$: idea of proof



- We have $g = (d \rightarrow c \rightarrow b \rightarrow a)$.
- Suppose that there is $f \in F(n, q)$ such that $f \triangleright_w g$.
- One can prove that there exists 4 distinct configurations a', b', c', d' equals to a, b, c, d on the second register such that f⁽²⁾ = (d' → c' → b' → a').
- Since $f^{(2)}$ updates only the register 2, we have $a'_1 = b'_1 = c'_1 = d'_1$.
- Since $a'_2 = c'_2$ and $a'_1 = c'_1$, a' = c' which is a contradiction.

Result

For all n = 3, q = 2, for all $g \in F(n, q)$ there exists $f \in F(n, q)$ such that $f \triangleright g$.

We check this result by computer. The program uses brute force:

- Take all $f \in F(n, q)$ (there are 16 777 216).
- Compute the bigger S_f such that $f \triangleright S_f$.
- Check that the unions of all the S_f is F(n, q).
- (you can save some computation time using symmetries)

Conjecture:

For all $n \ge 3$, q = 2, for all $g \in F(n, q)$ there exists $f \in F(n, q)$ such that $f \triangleright g$.

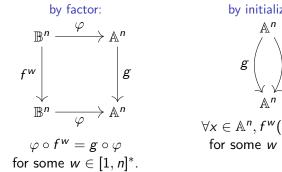
Simulations with larger alphabet

Consider $f \in F(n, q')$ and $g \in F(n, q)$ with q' > q.

Question?

What does it means for f to simulates g?

Let $\mathbb{A} = \{0, \dots, q-1\}$ and $\mathbb{B} = \{0, \dots, q'-1\}$, we have $\mathbb{A} \subseteq \mathbb{B}$. Let $\varphi : \mathbb{B} \mapsto \mathbb{A}$ be surjective and let $\varphi : x \mapsto (\varphi(x_1), \dots, \varphi(x_n))$.

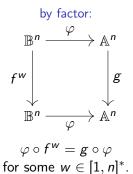


by initialization:

 $\forall x \in \mathbb{A}^n, f^w(x) = g(x)$ for some $w \in [1, n]^*$.

Simulations by factor: Results

Let $\mathbb{A} = \{0, \dots, q-1\}$ and $\mathbb{B} = \{0, \dots, q'-1\}$, we have $\mathbb{A} \subseteq \mathbb{B}$. Let $\varphi : \mathbb{B} \mapsto \mathbb{A}$ be surjective and let $\varphi : x \mapsto (\varphi(x_1), \dots, \varphi(x_n))$.



Theorem

For any $q \ge 2$ and $n \ge 3$, there exists $f \in F(n, 2q)$ which simulates all F(n, q) by factor.

Florian BRIDOUX

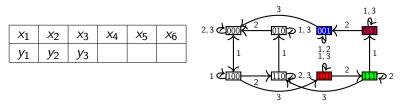
Simulations by factor: proof (sketch)

Decompose $z \in \mathbb{B}^n$ as $x \in \mathbb{A}^n$ and $y \in \{0, 1\}^n$.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	<i>Y</i> 6

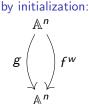
Simulations by factor: proof (sketch)

Decompose $z \in \mathbb{B}^n$ as $x \in \mathbb{A}^n$ and $y \in \{0, 1\}^n$.



- *f* realizes distinct transformations of *x* depending on the controlling states (*y*₁, *y*₂, *y*₃).
- In particular, we can realizes:
 - a circular permutation c of \mathbb{A}^n with $1, 2, 2, 1, 3, 4, \dots, n$.
 - the transposition $k = (0^n \leftrightarrow 10^{n-1})$ with 2, 1, 1.
 - the assignment $d = (0^n \rightarrow 10^{n-1})$ with 2, 1, 2, 1.
- We can generate F(n, q) by combinations of these operations.
- ▲ The first state of (y₁, y₂, y₃) is uninitialized: we first use a synchronization word ((3)^q, 2, 3, 1, 1, 2, 1, 3) to put it in the state 101 without modifying x.

Simulations by initialization: Results



$$\forall x \in \mathbb{A}^n, f^w(x) = g(x)$$

for some $w \in [1, n]^*$.

Theorem

For all n, q with $n \ge 3q$, $\exists f \in F(n, q + 1)$ such that such that f simulates all F(n, q) by initialization.

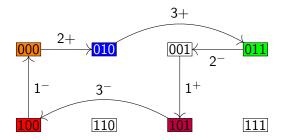
Simulations by initialization: proof (sketch)

- Same principle: we want to use the bigger alphabet to encode 3 bits *y*₁, *y*₂, *y*₃ which will serve as controlling state.
- This time, the controlling state is initialized but its enconding is more complex.

Let q = 3, n = 3q. We have $\mathbb{A} = \{0, 1, 2\}$ and $\mathbb{B} = \{0, 1, 2, 3\}$. Let x = (0, 1, 2, 2, 1, 2, 0, 0, 0).

• If
$$y_1 = 0$$
 then $z_{1,...q} = x_{0,...,q}$. Example with $y = (0, 0, 0)$.
 $z = \boxed{0 \ 1 \ 2 \ 2 \ 1 \ 2 \ 0 \ 0 \ 0}$
• If $y_1 = 1$ then $z_{i+1} = q$ with $i = x_1 + \dots x_q \pmod{q}$.
Example with $y = (1, 1, 1)$, we have $i_1 = 0 + 1 + 2 = 0$,
 $i_2 = 2 + 1 + 2 = 2$ and $i_3 = 0 + 0 + 0 = 0$.
 $z = \boxed{3 \ 1 \ 2 \ 2 \ 1 \ 3 \ 3 \ 0 \ 0}$

Simulations by initialization: proof (sketch)



The construction is similar to the one used for the simulations by factor:

- *f* realizes distinct transformations of *x* depending on the controlling states (*y*₁, *y*₂, *y*₃).
- Thanks to this transformation, f can simulate all F(n, q).
- Additional difficulty: for technical reasons, if we have a transition y₁y₂y₃ → y₁y₂y₃ then there is no transition y₁y₂y₃ → y₁y₂y₃.

Florian BRIDOUX

On simulation in Automata Networks

Conclusion

- Take away:
 - It is possible to simulate all F(n, q) by factor by an AN $f \in F(n, 2q)$ $(n \ge 3)$.
 - It is possible to simulate all F(n, q + 1) by initialization by an AN $f \in F(n, q + 1)$ $(n \ge 3q)$.
 - For any q ≥ 3, n ≥ 2, there exists g ∈ F(n,q) which is not simulated by any f ∈ F(n,q).
 - Conversely, all $g \in F(3,2)$ can be simulated by a $f \in F(3,2)$.
- Open question: What happens in the Boolean case for $n \ge 4$?

Conclusion

- Take away:
 - It is possible to simulate all F(n, q) by factor by an AN $f \in F(n, 2q)$ $(n \ge 3)$.
 - It is possible to simulate all F(n, q + 1) by initialization by an AN $f \in F(n, q + 1)$ $(n \ge 3q)$.
 - For any q ≥ 3, n ≥ 2, there exists g ∈ F(n,q) which is not simulated by any f ∈ F(n,q).
 - Conversely, all $g \in F(3,2)$ can be simulated by a $f \in F(3,2)$.
- Open question: What happens in the Boolean case for $n \ge 4$?

Thanks you for you attention.