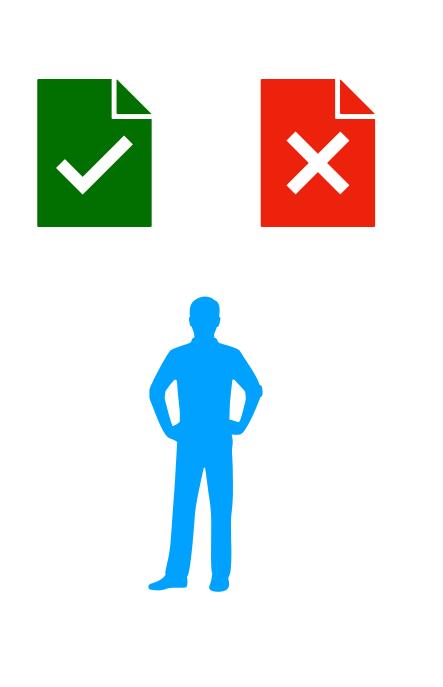
On Symmetry versus Asynchronism: At the Edge of Universality in Automata Networks

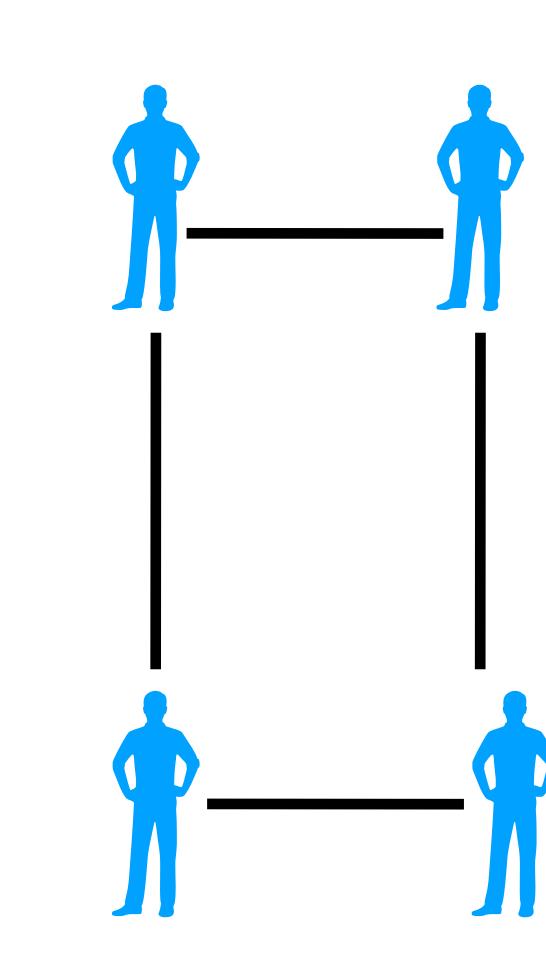
Martín Ríos Wilson and Guillaume Theyssier.

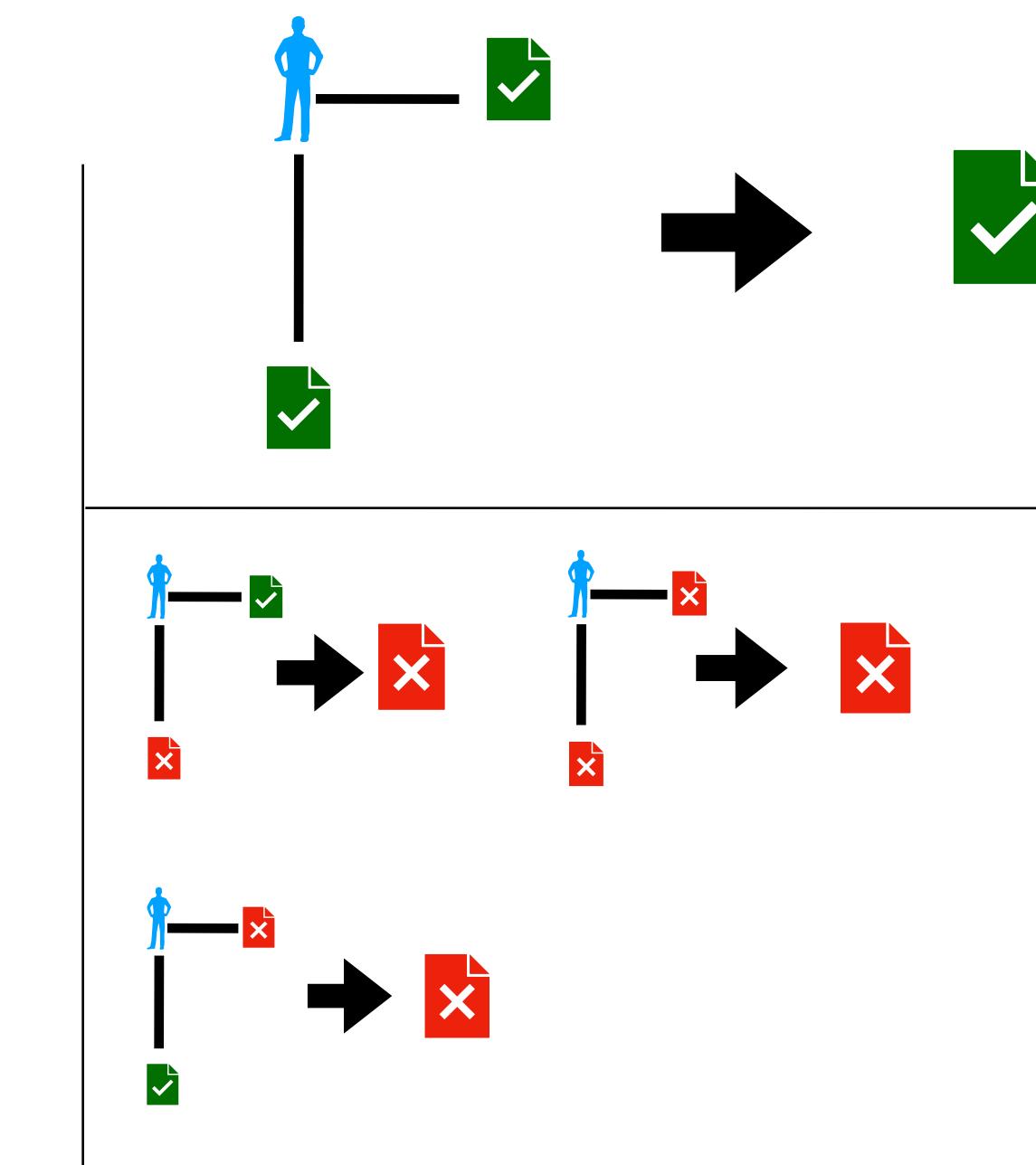
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez.

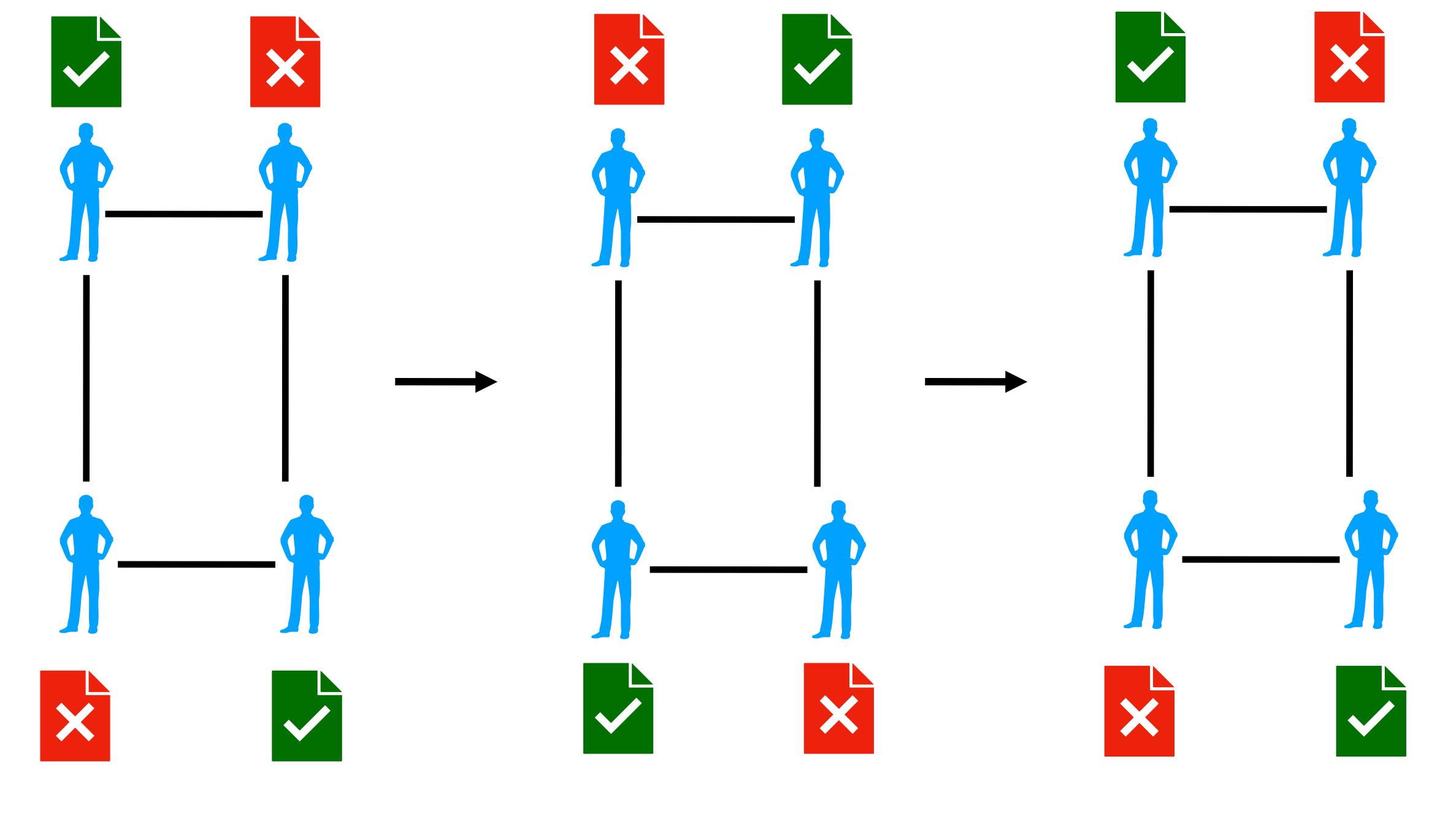
The model

Automata networks





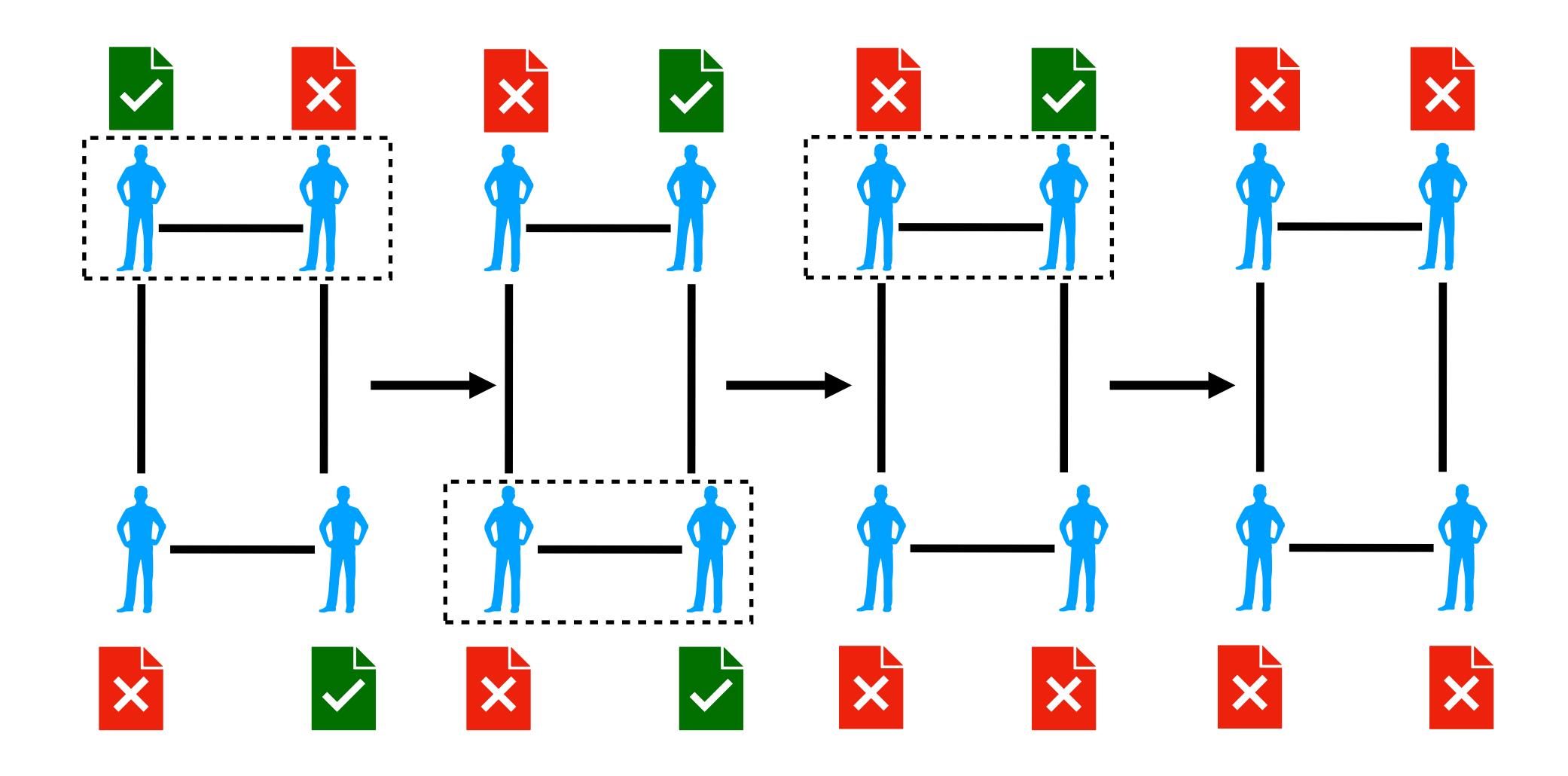




Automata networks

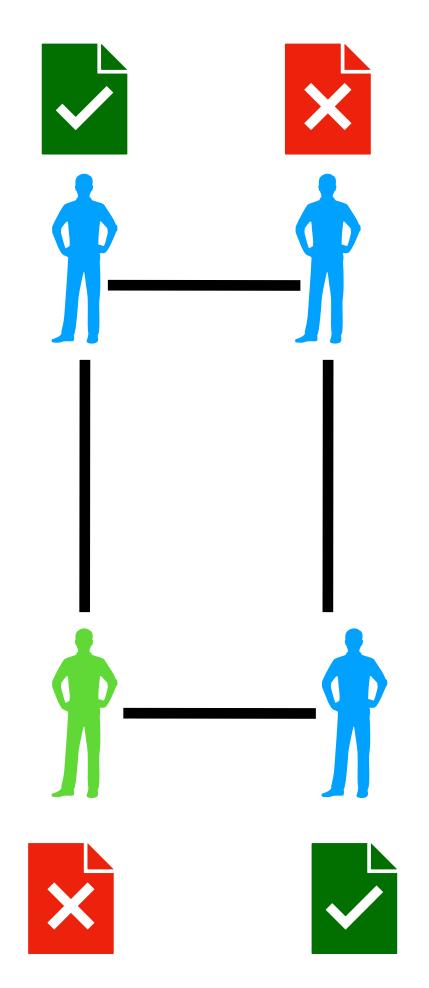
- Model : G = (V, E) and a function $F: Q^V \mapsto Q^V$.
- (Q^V, F) is a dynamical system. Each configuration defines an orbit.
- Deterministic and finite: each configuration reaches an attractor (fixed point/limit cycle) in finite time.
- The dynamical behavior can change according to different factors:
 - 1. Update scheme.
 - 2. Graph structure.
 - 3. Function properties.

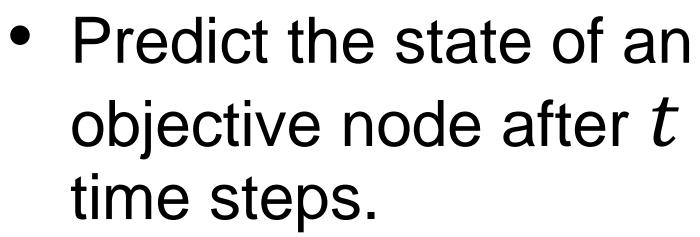
Update schemes



Main questions and general approach

A computational complexity approach **Prediction problem**

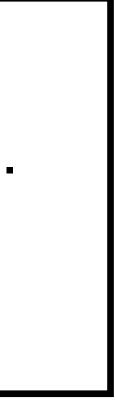




- $t \in \mathbb{N}$ given in unary or binary.
- No time in the input (Prediction-Change).

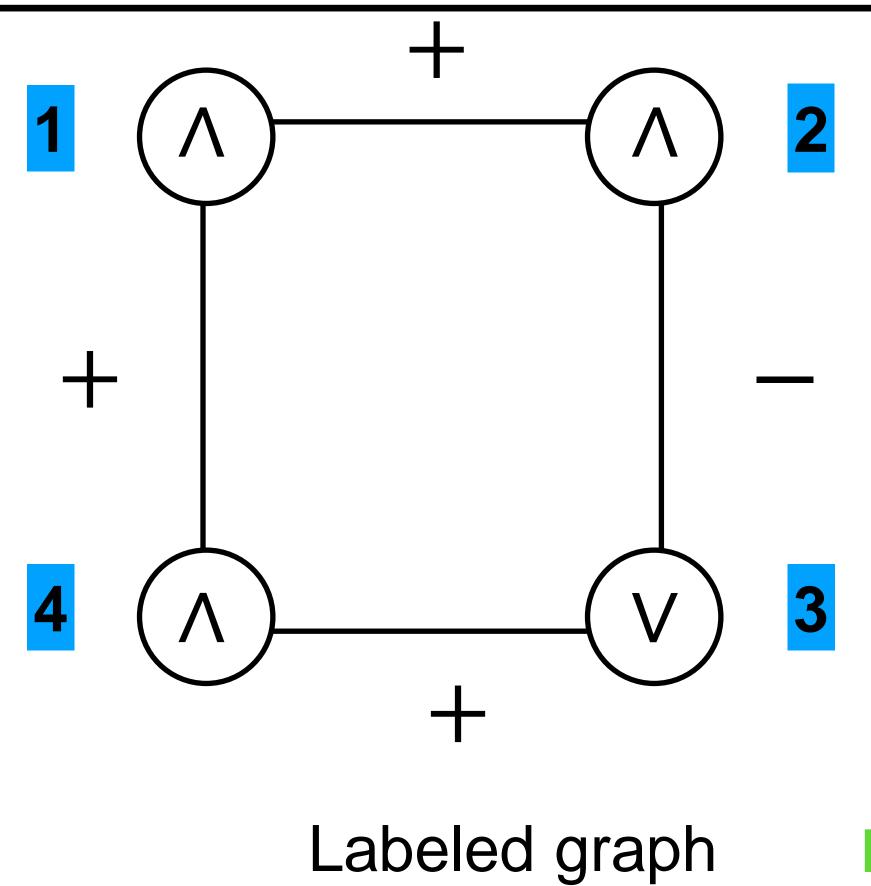
- Direct simulation approach:
- Solvable in polynomial space.

- Polynomial time for Unary PRED.

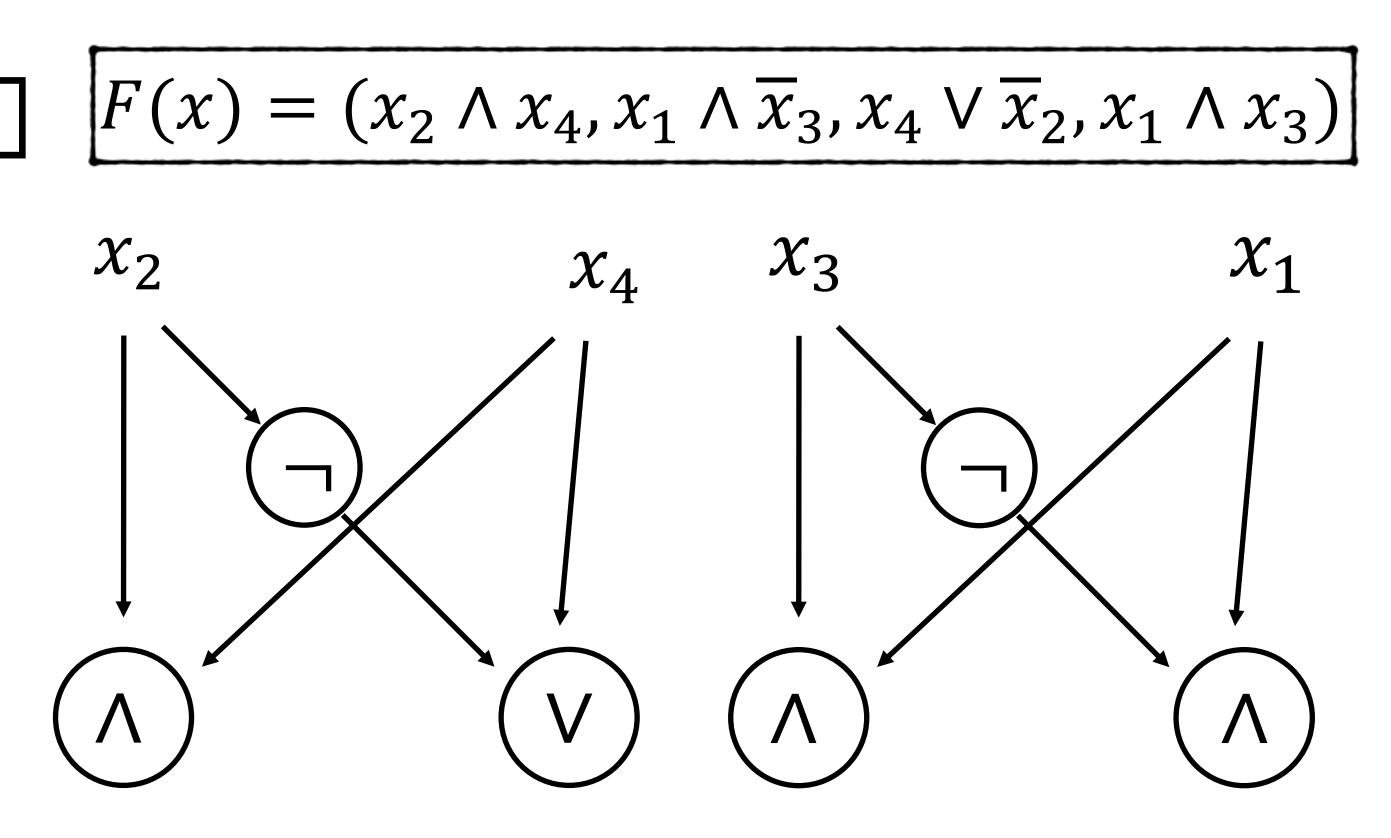


Representations

Concrete symmetric automata networks (CSAN).



Labeled graph

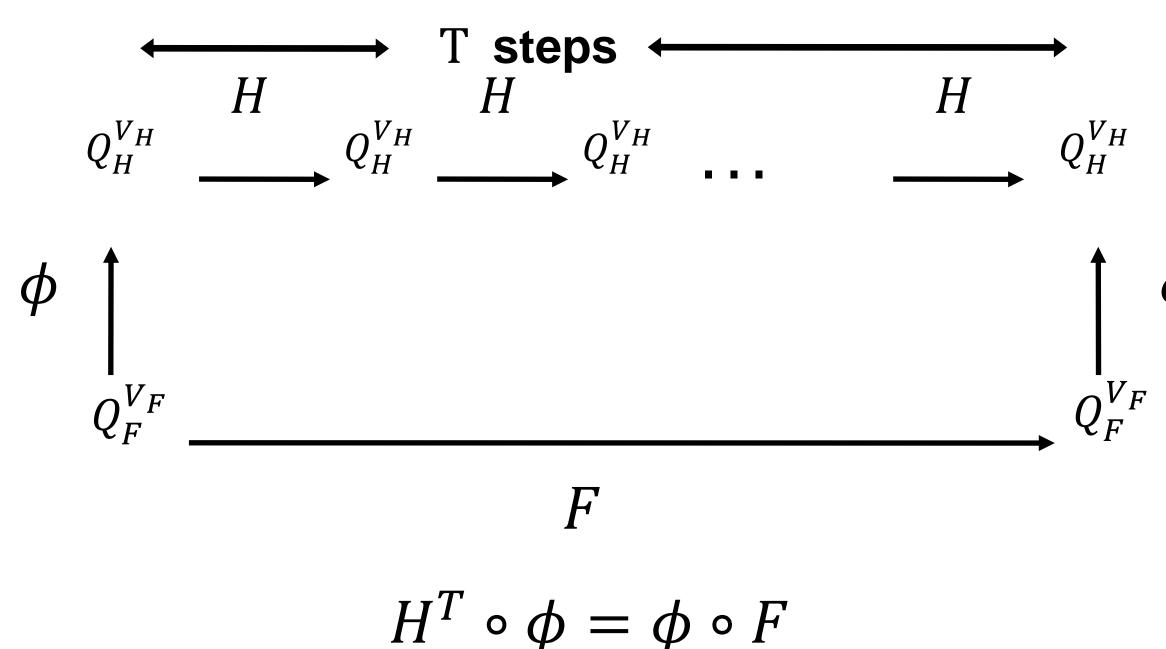


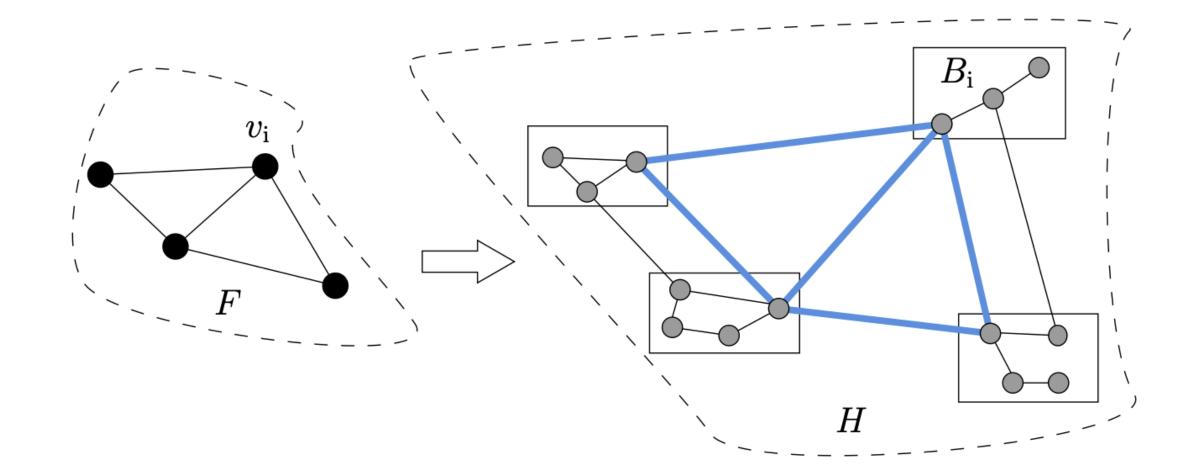
Boolean circuit

Boolean circuit

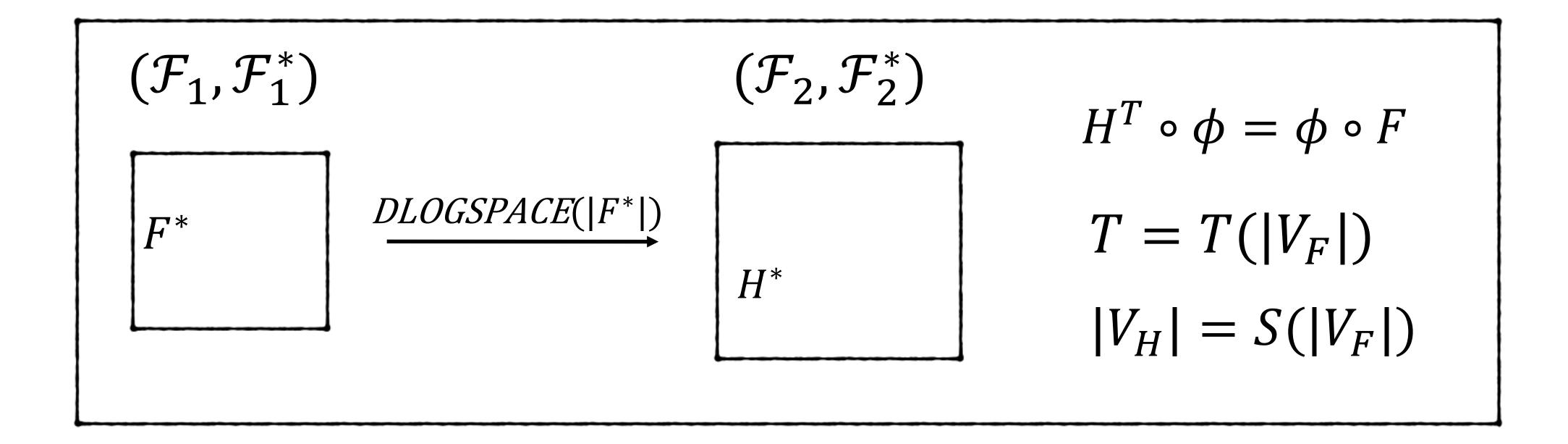
Simulation between automata networks

- Each node is represented by a block.
- States of the simulated network F are coded by an **injective** map ϕ .
- Each time step of *F* is simulated in *T* time steps by *H*





Simulation between families of automata networks



From now on, we consider that T, S are polynomial functions.

Simulation and universality.

Lemma.
$$\mathcal{F}_1 \preccurlyeq^T \mathcal{F}_2 \Longrightarrow P$$

network in linear space and constant time.

(Bounded degree automata networks are AN that can be represented by bounded degree graphs).

• Simulation allow us to transfer computational properties from one family to another:

$PRED_{\mathcal{F}_1} \leq_L PRED_{\mathcal{F}_2}$

• A family \mathcal{F} is strongly universal if it can simulate any bounded degree automata

Consequences of universality

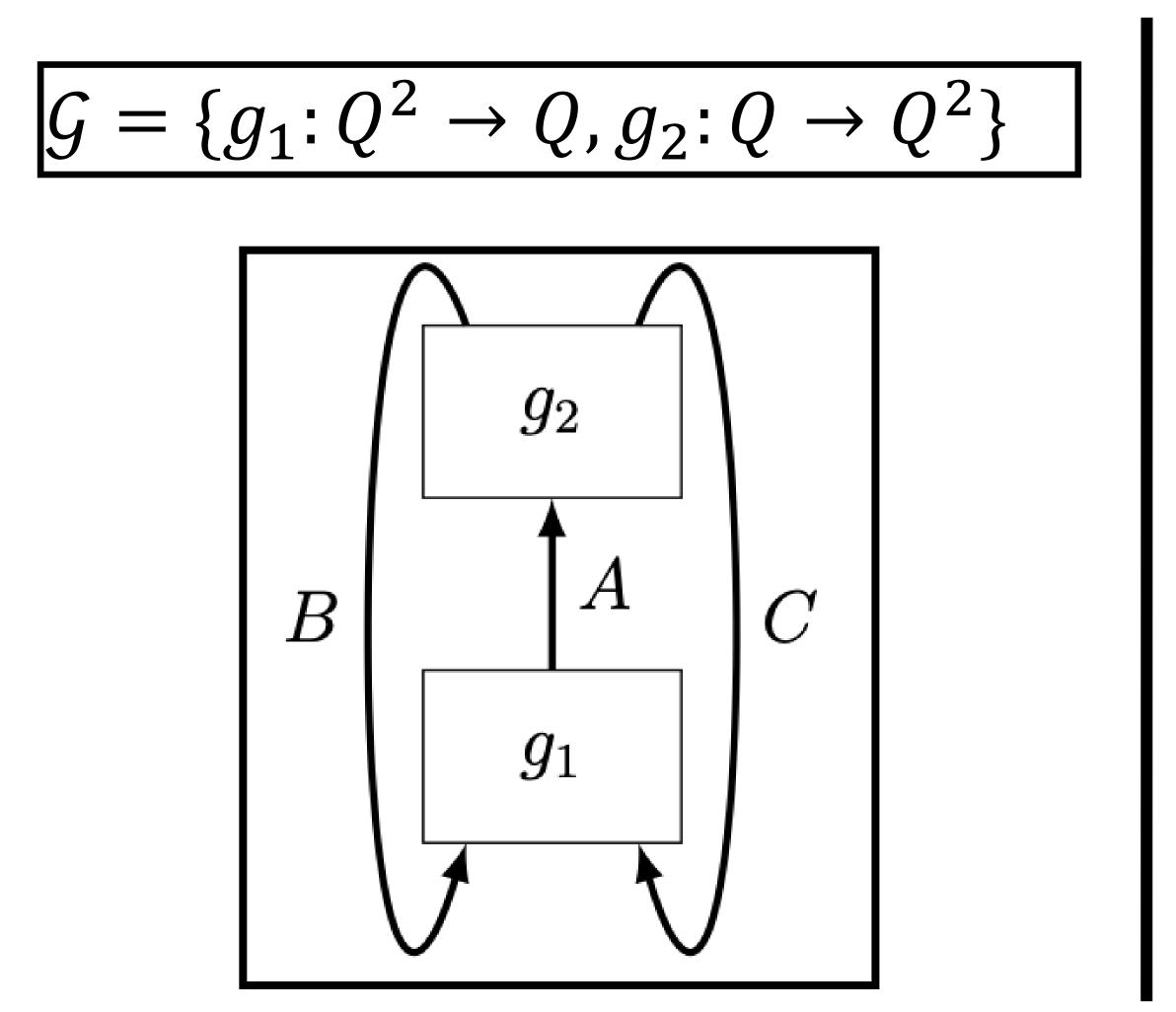
- It admits attractors of exponential period in the size of the network.
- Unary Prediction is **P-hard**.
- Binary Prediction is **PSPACE**-hard.
- Prediction Change is **PSPACE**-hard.

strongly universal.

Theorem. A strongly universal family satisfies the following properties:

- So now... How do we show that a family is strongly universal?
- Idea: Find a family that is "easy" to simulate which is also

G-Networks



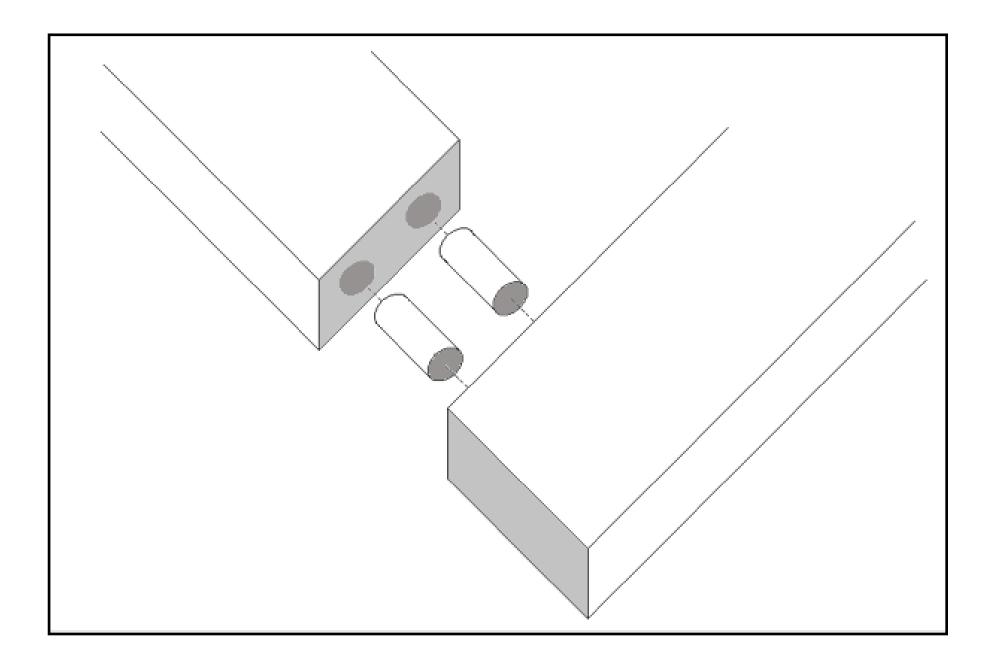
 $\mathcal{G}_{mon,2} = \{ \Lambda : \{0,1\}^2 \to \{0,1\}^2, \forall : \{0,1\}^2 \to \{0,1\}^2 \}$

Theorem. The family of all *Gmon,2*-networks is **strongly universal.**

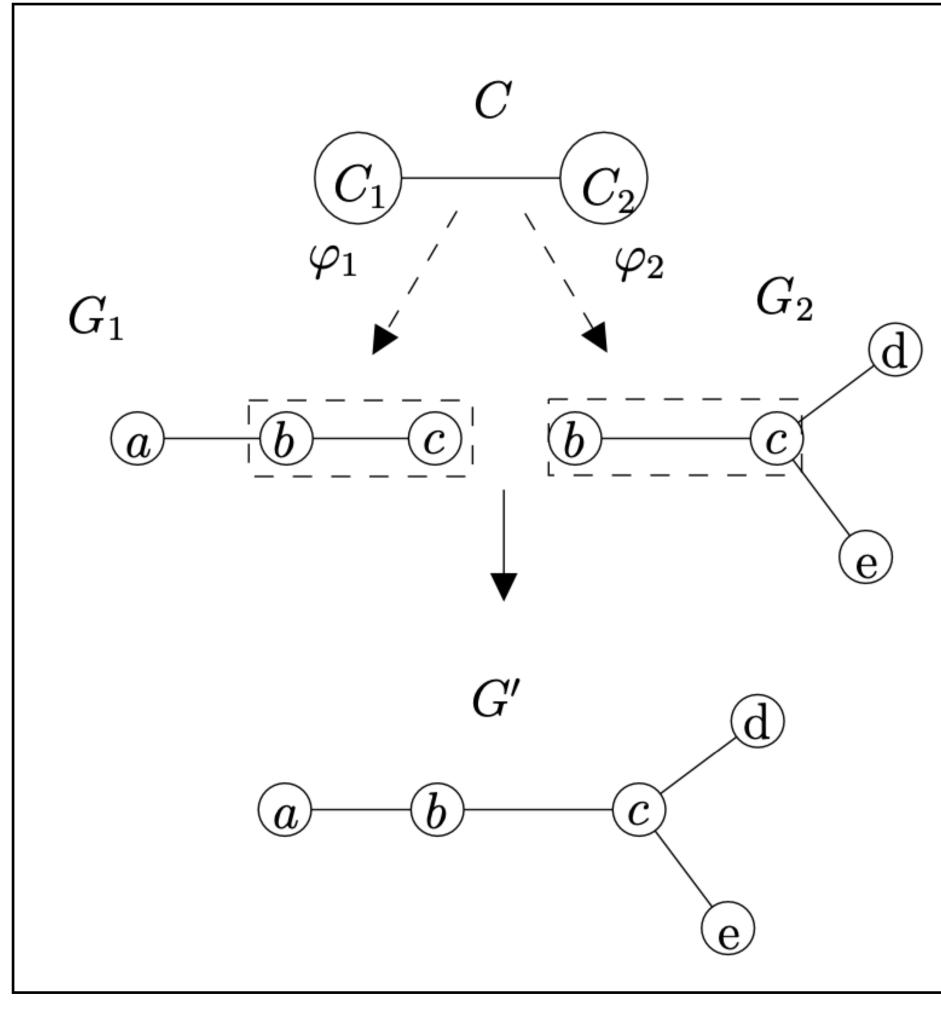
How can we use this modular structure in our simulation framework?

Simulate gates independently and then, "glue" them (Symmetry vs Asymmetry).

Glueing



source: https://en.wikipedia.org/wiki/Dowel#/media/File:Woodworkingjoint-butt-dowel.gif



Dynamical constraints for glueing

How do we simulate asymmetry inside a symmetric simulator?

Coherent G –gadgets

• Pseudo-orbits (orbits in which not every node respects the global rule):

-simulate the input/output relations of a gate inside the gadget.

Constant simulation time.

family of all G-networks in **constant time** and **linear space**.

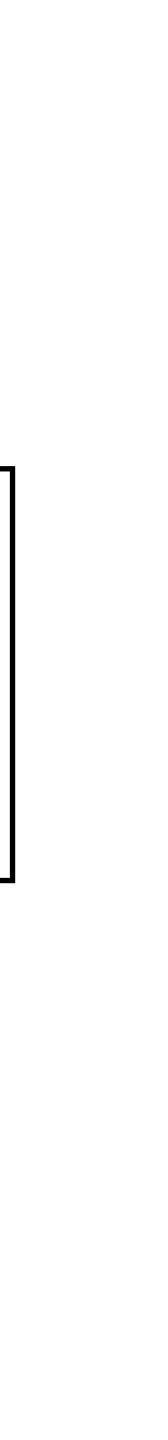
Theorem: If a CSAN family \mathcal{F} admits coherent \mathcal{G} -gadgets then, it simulates the

Coherent gadgets

Corollary: If a CSAN family \mathcal{F} admits coherent $\mathcal{G}_{mon,2}$ -gadgets then, it is strongly universal.

attractors with super-polynomial period.

Corollary: If a CSAN family \mathcal{F} admits coherent \mathcal{G}_{coni} -gadgets then, it has



Summary of results

Family/Update schemes	Parallel Ç	Block sequential	Local clocks	─ General
Conjunctive networks	BP	BP	BP	SPA+NC PRED
Locally positive	BP	BP	SU	SU
Signed conjunctive	BP	SU	SU	SU
Min-max networks	BP	SU	SU	SU

- BP = Bounded period attractors
- SPA = Super polynomial period attractors
- SU = Strongly universal

Perspectives

- 1. Glueing as a general operation on automata networks.
- 2. Study of G-networks.
- Update schemes: going beyond periodic schemes. 3.