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Buffer networks

Idea: add a “buffer” or “delay” to each interaction
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• each buffer is a copy of its regulator
e.g., fb12(x1, x2, b12, b13, b21, b23) = x1

• regulators are replaced by buffers in the regulation of their targets
e.g., f3(x1, x2) = x̄1 ∧ x2 becomes
f3(x1, x2, b12, b13, b21, b23) = b̄13 ∧ b23

• buffer dynamics = asynchronous dynamics of the extended Boolean
network
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Motivation: attractors

Attractors of asynchronous Boolean networks:

• fixed points and

• complex/cyclic attractors

• fixed points are easier to find

• trap spaces (subspaces closed for the dynamics; can be seen as partial
fixed points) can also be found “easily”

• in biological networks, minimal trap spaces are often good
approximations of attractors

I Most permissive semantics: attractors = minimal trap spaces.

I Buffer networks: attractors are in one-to-one correspondence with
minimal trap spaces.
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Definitions of dynamics

Given f : {0, 1}n → {0, 1}n

I synchronous dynamics:

x 7→ f (x) 7→ f 2(x) 7→ . . .
· f (x)

x ·

I asynchronous dynamics: for all i ∈ ∆(x , f (x)) = {i | xj 6= fj (x)}

x → x + e i
· f (x)

x ·

I generalised asynchronous dynamics: for all I ⊆ ∆(x , f (x))

x → x +
∑
i∈I

e i
· f (x)

x ·



Buffer networks and canonical states

• add buffer variables that replace and copy their regulators

• canonical: states where buffer variables coincide with their regulators

• from every non-canonical state there is a path to a canonical

Example: f (x1, x2) = (x2, x1)
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Buffer networks: properties (1)

• asynchronous buffer dynamics contain all trajectories of generalised
asynchronous dynamics
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Buffer networks: properties (1)



Buffer networks: properties (2)

• reachability of trap spaces

I trap space in Boolean network ↔ canonical trap space in buffer network

I min. trap spaces in Boolean network ↔ min. trap spaces in buffer network
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• reachability of trap spaces: given an initial condition x , all trap spaces
contained in the minimal trap space containing x are reachable
(canonical x , canonical trap spaces)

x ·

unreachable

minimal trap space T containing x

x ·

unreachable

all trap spaces in T are reachable from x

No attractors outside minimal trap spaces
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Buffer networks: properties (3)

• Each minimal trap space contains exactly one attractor

attractor

minimal subspace T containing the attractor → trap spaceminimal subspace T containing the attractor → trap space

x ·

attractor reachable from all x in T



Buffer networks: properties (3) - example

• original network: two attractors in a minimal trap space (full space)

f1(x) =
x1x̄2|x1x3|x1x̄4|x̄2x3x̄4

1 2

3 4



Buffer networks: properties (3) - example

• buffered network: one attractor

f b
1 (x) = x1b̄21|x1x3|x1x̄4|b̄21x3x̄4

1 b21 2

3 4



How many buffers?

Do we need buffer i → j if i has only one target?
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we call this type of extensions buffer-separated

• all interactions from regulators with multiple
targets are buffered

• all cycles are buffered
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What if the network is already bipartite?

× Reachability: clarify which variables are core and which variables are
buffer.

1

1 2 1 b11
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X Attractors ↔ minimal trap spaces
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Open questions: bounds on path lengths?

x , y ∈ {0, 1}n Boolean states

most permissive
if there exists a path from x to y , then there exists a path from x to y
with at most 3n transitions

buffer-separated
Example:

f (x1, x2, x3, x4) = (x̄3, x̄4, x2, x1 ∧ x3)

4 core variables, 5 buffer variables

no path 0000 0101 in asynchronous dynamics

paths 0000 0101 in buffered network require at least 18 updates of core
variables



Open questions: comparison to multivalued

multivalued network

F : M = X1 × · · · × Xn → M, Xi = {0, . . . ,mi}

F is a refinement of f : {0, 1}n → {0, 1}n if “it can be seen as a
multivalued version of f ”

most permissive
For any asynchronous transition in any multivalued refinement, a
corresponding trajectory exists

buffer-separated
For any asynchronous transition in a single-threshold refinement, a
corresponding trajectory exists



Summary

Definition:

• Network buffering allows to separate regulation thresholds

• No buffer needed if only one target and all cycles are buffered

• Some networks can be seen as buffer networks

Properties:

• General asynch. ⊆ buffer asynch. ⊆ most permissive dynamics

• Minimal trap spaces are good approximations of attractors

• All trap spaces “visible” from a given initial condition are reachable

A. Naldi, H. Siebert and E. T., Buffer extensions of Boolean networks, in

preparation

elisa.tonello@fu-berlin.de
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