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Buffer networks

Idea: add a “buffer” or “delay” to each interaction
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® each buffer is a copy of its regulator
e.g., fp,(x1,x2, b12, b13, ba1, b23) = x1

® regulators are replaced by buffers in the regulation of their targets
e.g., f3(x1,x2) = X1 A\ xo becomes
f3(x1, %2, b12, b13, bo1, bo3) = b1z A bos

® buffer dynamics = asynchronous dynamics of the extended Boolean
network
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Motivation: trajectories

Boolean networks do not capture all behaviours of multivalued or
continuous models

most permissive semantics (Paulevé et al., Nature Comm., 2020)
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Boolean networks do not capture all behaviours of multivalued or
continuous models

buffer networks:
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® each buffer is a copy of its regulator
® regulators are replaced by buffers in the regulation of their targets

® buffer dynamics = asynchronous dynamics of the extended Boolean
network



Motivation: trajectories

Boolean networks do not capture all behaviours of multivalued or
continuous models

buffer networks:
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® separating thresholds by introducing “buffer” or “delay” variables
® still a Boolean network. core vs buffer components

® capture some multivalued behaviours:
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Motivation: trajectories

Boolean networks do not capture all behaviours of multivalued or
continuous models
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® separating thresholds by introducing “buffer” or “delay” variables
® still a Boolean network. core vs buffer components

® capture some multivalued behaviours:
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Motivation: attractors

trap spaces

Attractors of asynchronous Boolean networks:

® fixed points and F
e complex/cyclic attractors D

0.

attractors

® fixed points are easier to find

® trap spaces (subspaces closed for the dynamics; can be seen as partial
fixed points) can also be found “easily”

® in biological networks, minimal trap spaces are often good
approximations of attractors

> Most permissive semantics: attractors = minimal trap spaces.

» Buffer networks: attractors are in one-to-one correspondence with
minimal trap spaces.
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Definitions of dynamics

Given f: {0,1}" — {0,1}"

» synchronous dynamics:

xn—)f(x)»—>f2(x)»—>... /

» asynchronous dynamics: for all i € A(x, f(x)) = {i | xj # fj(x)}
i f(x)
X=X+ e

X —— -

> generalised asynchronous dynamics: for all I C A(x, f(x))



Buffer networks and canonical states

® add buffer variables that replace and copy their regulators
® canonical: states where buffer variables coincide with their regulators

® from every non-canonical state there is a path to a canonical

Example: f(x1,x2) = (x2,x1)
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Buffer networks: properties (1)

® asynchronous buffer dynamics contain all trajectories of generalised
asynchronous dynamics

given | C A(x, f(x)), x — x! transition in generalised dynamics,
there exists a path from x to X' in the buffer asynchronous dynamics

Example: f(x1,x2) = (x2,x1)
oo 0
— l \\\ T
f(10) = 01 10
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Buffer networks: properties (1)

® asynchronous buffer dynamics contain all trajectories of generalised
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Buffer networks: properties (1)

synchronous ‘ ‘ asynchronous
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Buffer networks: properties (2)

® reachability of trap spaces

original buffer

> trap space in Boolean network <+ canonical trap space in buffer network

» min. trap spaces in Boolean network <> min. trap spaces in buffer network



Buffer networks: properties (2)

® reachability of trap spaces: given an initial condition x, all trap spaces
contained in the minimal trap space containing x are reachable
(canonical x, canonical trap spaces)
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Buffer networks: properties (2)

® reachability of trap spaces: given an initial condition x, all trap spaces
contained in the minimal trap space containing x are reachable
(canonical x, canonical trap spaces)

unreachable

=

minimal trap space T containing x

all trap spaces in T are reachable from x

No attractors outside minimal trap spaces




Buffer networks: properties (3)

® Each minimal trap space contains exactly one attractor




Buffer networks: properties (3)

® Each minimal trap space contains exactly one attractor

attractor

.

minimal subspace T containing the attractor — trap space




Buffer networks: properties (3)

® Each minimal trap space contains exactly one attractor

attractor

.

minimal subspace T containing the attractor — trap space

attractor reachable from all x in T



Buffer networks: properties (3) - example

e original network: two attractors in a minimal trap space (full space)

/'1011 » 1111

y /
1001+ 1101

fi(x) = oon—» 11

X1 X2| X1X3|X1 X4 | X2 X34 ooﬁ 0101

12

0010 0110
[ /
0000+ 0100
3+— 4
/1010 /110

1000 « 1100




Buffer networks: properties (3) - example

e huffered network: one attractor
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How many buffers?

Do we need buffer i — j if i has only one target?
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Only so that all cycles are buffered
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How many buffers?

Do we need buffer i — j if i has only one target?
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Only so that all cycles are buffered

we call this type of extensions buffer-separated
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® all cycles are buffered —

® all interactions from regulators with multiple
targets are buffered



What if the network is already bipartite?

% Reachability: clarify which variables are core and which variables are
buffer.
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© Some open questions



Open questions: bounds on path lengths?

x,y € {0,1}" Boolean states

most permissive
if there exists a path from x to y, then there exists a path from x to y
with at most 3n transitions

buffer-separated
Example:

f(x1, %2, X3, Xa) = (X3, X4, X2, X1 \ X3)
4 core variables, 5 buffer variables
no path 0000 ~~» 0101 in asynchronous dynamics

paths 0000 ~» 0101 in buffered network require at least 18 updates of core
variables



Open questions: comparison to multivalued

multivalued network
F-M=Xix---xX,— M, X,-:{O,...,m,-}

F is a refinement of f: {0,1}" — {0,1}" if “it can be seen as a
multivalued version of f"

most permissive
For any asynchronous transition in any multivalued refinement, a
corresponding trajectory exists

buffer-separated
For any asynchronous transition in a single-threshold refinement, a
corresponding trajectory exists



Definition:
® Network buffering allows to separate regulation thresholds
® No buffer needed if only one target and all eycles are buffered

® Some networks can be seen as buffer networks

Properties:
® General asynch. C buffer asynch. C most permissive dynamics
e Minimal trap spaces are good approximations of attractors
e All trap spaces “visible” from a given initial condition are reachable

A. Naldi, H. Siebert and E. T., Buffer extensions of Boolean networks, in
preparation

elisa.tonello@fu-berlin.de
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