Isometries of the hypercube: a tool for Boolean regulatory networks analysis

Jean Fabre-Monplaisir - Brigitte Mossé - Elisabeth Remy

July 2021

WAN - CIRM Workshop on Automatas Networks

Introduction

Team MABioS

Biological and medical motivation: to develop tools for the analysis of regulatory networks controlling the cellular processes

- \hookrightarrow To get a better understanding of these processes
- \hookrightarrow To understand and predict the impact of given perturbations, such as disease-induced perturbations

Necessity of in-depth understanding of mathematical objects we use: Finite Dynamical Systems

Outline

- 1 Isometries of the hypercube
- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

ション ふぼう メヨン メヨン シックの

- 5 Transforming and classifying Boolean FDS
- 6 Some applications
 - Application to acyclic RG Robert's theorem
 - Application to families of motifs
 - Application to the "negative Thomas's rule"

Outline

1 Isometries of the hypercube

- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

- 5 Transforming and classifying Boolean FDS
- 6 Some applications

Isometries of the hypercube

Geometrical point of view:

 \hookrightarrow Hypercube embedded in n dimensional euclidian space \mathbb{R}^n

Isometries of the hypercube

Geometrical point of view:

 \hookrightarrow Hypercube embedded in n dimensional euclidian space \mathbb{R}^n

Isometries of $\mathcal{H}_n = [0, 1]^n \subset \mathbb{R}^n$

Form a group $\Gamma(\mathcal{H}_n)$ whose elements are composed of

- \hookrightarrow a permutation of axes
- \hookrightarrow hyperplane symmetries exchanging parallel hyperfaces

From geometrical to symbolic point of view

Isometries of $\mathcal{H}_n = [0, 1]^n$ are isometries of $\{0, 1\}^n$

Given $f \in \Gamma(\mathcal{H}_n)$ and $x = (x_1, \dots, x_n) \in \{0, 1\}^n$, $f(x) = (x_{\sigma^{-1}(1)}^{\varepsilon_1}, \dots, x_{\sigma^{-1}(n)}^{\varepsilon_n})$ (where $a^{-1} = 1 - a$, for $a \in \{0, 1\}$)

 $\,\hookrightarrow\,\sigma$ codes for the permutation of axes

 \hookrightarrow $(\varepsilon_1,\ldots,\varepsilon_n)\in\{-1,+1\}^n$ codes for the hyperplane symmetries

Outline

1 Isometries of the hypercube

- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

- 5 Transforming and classifying Boolean FDS
- 6 Some applications

Boolean FDS

Boolean FDS: a map $S: X = \{0, 1\}^n \rightarrow X$

*ロ * * @ * * 目 * ヨ * ・ ヨ * の < や

n underlying components g_1, \ldots, g_n

 \hookrightarrow "processors"

 \hookrightarrow "genes"

Associated dynamics

 $S: X = \{0,1\}^n \to X$

States: elements $x = (x_1, \ldots, x_n)$ of X

- Synchronous dynamics: iteration of S
 x has one successor S(x) (deterministic)
- (Fully) asynchronous dynamics one coordinate changes at a time (underlying delays, non-deterministic)

ション ふぼう メヨン メヨン シックの

State Transition Graphs (STG)

STG give successors of the states

- Synchronous STG vertices = states x, edges give the successor S(x)
- Asynchronous STG vertices = states x, edges give Upd(x) successors

S(000) = 110

 $000 \longrightarrow 110$

In the synchronous STG

Regulatory Graph associated to *S*

 g_1, g_2, \dots, g_n are regulated through the dynamics: at state x, coordinate x_k = level of g_k

Given
$$x = (x_1, ..., x_n)$$
 and $S(x) = (y_1, ..., y_n)$

- \hookrightarrow if switching x_i implies that y_j switches in the same sense, g_i activates g_j (locally)
- \hookrightarrow if switching x_i implies that y_j switches in the other sense, g_i inhibites g_j (locally)

Regulatory Graph $\mathcal{RG}(S)$: Obtained by superimposing local Regulatory Graphs Signs of interactions may be undetermined

Example: S, asynchronous STG, Regulatory Graph (RG)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

 \hookrightarrow Same information in S and in the asynchronous STG \hookrightarrow Information lost in the Regulatory Graph

Logical formalism

Logical formulas

Give necessary and sufficient conditions for the level of g_i to become equal to 1 under S

ション ふぼう メヨン メヨン シックの

- \hookrightarrow In a disjunctive normal form
- \hookrightarrow Involving only regulators

Example: S, asynchronous STG, RG, logical formulas

x	S(x)
	110
$\stackrel{+}{0}\stackrel{+}{0}\stackrel{-}{1}$	110
010	010
$1 \stackrel{+}{0} 0$	110
$\stackrel{+}{0}$ 1 $\stackrel{-}{1}$	110
101	100
$1 1 0^{+}$	$1\ 1\ 1\ 1$
$1\ \overline{1}\ 1$	101

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\hookrightarrow S(x)_1 = 1 \text{ iff } (x_1 = 1) \lor (x_2 = 0) \lor (x_3 = 1) \leftrightarrow S(x)_2 = 1 \text{ iff } (x_1 = 0) \lor (x_3 = 0) \leftrightarrow S(x)_3 = 1 \text{ iff } (x_2 = 1) \land (x_2 = 1)$$

Outline

1 Isometries of the hypercube

- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

- 5 Transforming and classifying Boolean FDS
- 6 Some applications

Problematic

Main problematic: determination of the attractors of the asynchronous STG

Attractors: terminal strongly connected components of the $\ensuremath{\mathsf{STG}}$

- Stable states: attractors reduced to a single state
- Complex attractors: attractors with at least 2 states

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Runways

Difficulty: combinatorial explosion of STG Some runways:

- To reduce the number of components
- To find links between the dynamics and the Regulatory Graph (Thomas's rules)
- To focus on circuits (an acyclic RG implies a degenerated dynamics - F.Roberts)
- To analyze the functionality of circuits (isolated: positive 2 stable states, negative one complex attractor)
- To focus on more complex motifs and their functionality
- To use probabilistic methods (Monte Carlo)
- Other classical mathematical approaches: to transform, to classify

Runways

Difficulty: combinatorial explosion of STG Some runways:

- To reduce the number of components
- To find links between the dynamics and the Regulatory Graph (Thomas's rules)
- To focus on circuits (no circuit implies degenerated dynamics - F.Roberts)
- To analyze the functionality of circuits (isolated: positive 2 stable states, negative one complex attractor)
- To focus on more complex motifs and their functionality
- To use probabilistic methods (Monte Carlo)
- Other classical mathematical approaches: to transform, to classify

Outline

1 Isometries of the hypercube

- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

- 5 Transforming and classifying Boolean FDS
- 6 Some applications

Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on asynchronous STG

A natural idea:

Asynchronous STG are embedded in the hypercube

- Isometric STG introduced by dynamicist Leon Glass
- Recent works of Franck Delaplace, Elisa Tonello

Particular interest on the combinatorial tools of group action theory (Burnside formula for counting of "configurations")

Jean Fabre-Monplaisir, Brigitte Mossé, and Elisabeth Remy. Isometries of the hypercube: a tool for boolean regulatory networks analysis. Physica D: Nonlinear Phenomena, 2021 (in press).

Action of the group $\Gamma(\mathcal{H}_n)$ on Boolean FDS giving "isometric" dynamics

S Boolean FDS, f isometry of the hypercube

For instance the central symmetry switches vee and wedge in all formulas

- Isometric is more than isomorphic (in the sense of graph theory).

- Two Boolean FDS such that their asynchronous graphs involve all the edges of \mathcal{H}_n are isometric iff they are isomorphic.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Idea of rigidity...

Outline

1 Isometries of the hypercube

- 2 Boolean Finite Dynamical Systems (FDS)
- 3 Problematic and some runways
- 4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

- 5 Transforming and classifying Boolean FDS
- 6 Some applications

To transform and to classify

Main ideas:

- \hookrightarrow To define classes gathering all isometric Boolean FDS
- → To choose in each class a representative the most appropriate
- \hookrightarrow To prioritise activations in this representative for mathematical questions

Major benefit of activations: rewriting

Typically, in the case of a positive circuit with only activations, S is simply the shift $S(x_1, \ldots, x_n) = (x_n, x_1, \ldots, x_{n-1})$

A key tool for the choice of representative

A way of identifying subgraphs of a RG, on which it is possible to choose the signs of the interactions after the action of some isometry

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● 日 ● ● ● ●

Outline

1 Isometries of the hypercube

2 Boolean Finite Dynamical Systems (FDS)

3 Problematic and some runways

4 Action of the group $\Gamma(\mathcal{H}_n)$ of isometries of the hypercube on Boolean FDS

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5 Transforming and classifying Boolean FDS

6 Some applications

- Application to acyclic RG Robert's theorem
- Application to families of motifs
- Application to the "negative Thomas's rule"

About Robert's theorem on acyclic RG

Robert's theorem

If $\mathcal{RG}(S)$ is acyclic and admits *r* genes without regulator $g_1, ..., g_r$, then for each input the lonely related attractor in the asynchronous STG is a stable state.

Robert's proof via isometries

- Consider an isometry f reduced to a permutation σ of axes producing a topological sorting of the RG.
- Under f, the adjacency matrix $\mathcal{M}(S)$ of the RG is conjugated in $P_{\sigma}\mathcal{M}(S)P_{\sigma}^{t} = a$ nilpotent upper triangular matrix. Consequence: $\mathcal{M}(S)$ is nilpotent.
- A basic inequality gives the proof: for x and y with same input

 $d(S^n(x),S^n(y)) \leq [\mathcal{M}(S)^t]^n \ d(x,y) = (0,\ldots,0)^t$

Special motifs: circuits, chorded circuits, flower-graphs

Special motifs: Hub-graphs

Interpretation of the types

in terms of concurrences /cooperations of regulators of the hub

イロト 不得 トイヨト イヨト 二日

The negative Thomas's rule

New proof of this rule: "Given $S : X \to X$ a boolean FDS such that the asynchronous dynamics of S displays a cyclic attractor, then the Regulatory Graph of S contains a negative circuit."

Sketch of proof (by contraposition)

Let S : X → X be a Boolean FDS such that all the interactions of *RG*(S) are activations (colaborative FDS). Then for any state x, there exists a stable state y such that x → y in *G_a*(S).

- Cooperative system -

The negative Thomas's rule

New proof of this rule: "Given $S : X \to X$ a boolean FDS such that the asynchronous dynamics of S displays a cyclic attractor, then the Regulatory Graph of S contains a negative circuit."

Sketch of proof (by contraposition)

- Let $S: X \to X$ be a Boolean FDS such that all the interactions of $\mathcal{RG}(S)$ are activations (colaborative FDS). Then for any state x, there exists a stable state y such that $x \to y$ in $\mathcal{G}_a(S)$.
- Let $S: X \to X$ be a Boolean FDS whose regulatory graph $\mathcal{RG}(S)$ is strongly connected, all the signs of the interactions are determined, and all the circuits are positive. There exists an isometry $f \in \Gamma(\mathcal{H}_n)$ such that all the interactions of $\mathcal{RG}(S)$ become activations under the conjugation by f.

- Key tool -

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

The negative Thomas's rule

New proof of this rule: "Given $S : X \to X$ a boolean FDS such that the asynchronous dynamics of S displays a cyclic attractor, then the Regulatory Graph of S contains a negative circuit."

Sketch of proof (by contraposition)

- Let $S: X \to X$ be a Boolean FDS such that all the interactions of $\mathcal{RG}(S)$ are activations (colaborative FDS). Then for any state x, there exists a stable state y such that $x \to y$ in $\mathcal{G}_a(S)$.
- Let $S: X \to X$ be a Boolean FDS whose regulatory graph $\mathcal{RG}(S)$ is strongly connected, all the signs of the interactions are determined, and all the circuits are positive. There exists an isometry $f \in \Gamma(\mathcal{H}_n)$ such that all the interactions of $\mathcal{RG}(S)$ become activations under the conjugation by f.
- A topological sorting of the graph of the strongly connected components of *RG*(*S*) gives the conclusion.

Thanks for your attention !

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Acknowledgements

- C. Chaouiya
- B. Mossé
- É. Remy
- L. Tichit
- L. Pio-Lopez
- S. Chapman
- M. Lucas
- D. Courtine
- L. Hérault
- S. Pankaew
- E. Novoa

• J. Fabre-Monplaisir

- A. Baudot
- O. Ozisik

<ロト < 同ト < 日ト < 日ト < 日 > 三 日

- M. Térézol
- J. Lambert

• D. Thieffry