Rice-like theorems for automata networks

G. Gamard P. Guillon K. Perrot G. Theyssier

WAN 2021, Marseille, France

Automata metworks

In this talk:

- Finite digraphs of finite automata
- Each node (automaton) has its own alphabet, transitions
- A node reads the state of its inbound neighbors to update
- Nodes update in parallel (all at the same time)

Automata metworks

In this talk:

- Finite digraphs of finite automata
- Each node (automaton) has its own alphabet, transitions
- A node reads the state of its inbound neighbors to update
- Nodes update in parallel (all at the same time)

2/27

Automata metworks

In this talk:

- Finite digraphs of finite automata
- Each node (automaton) has its own alphabet, transitions
- A node reads the state of its inbound neighbors to update
- Nodes update in parallel (all at the same time)

2/27

Trensition graphs

3/27

Trensition graphs

The transition graph of a network is the graph of the "function computed by" this network.

The network is a succint way to describe its transition graph.

The Rice theorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a Turing Machine is undecidable.

The Rice theorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of \mathcal{G}_{F}, given an automata network F.

Metatheorem

Any nontrivial property of the transition graph of an Automata Network is hard.

So much fine print...

- Property?
- Nontrivial?
- Hard?

The Rice theorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of \mathcal{G}_{F}, given an automata network F.

Metatheorem

Any nontrivial property of the transition graph of an Automata Network is hard.

So much fine print...

- Property?
- Nontrivial?
- Hard?

Finite transition graph \Longrightarrow everything is decidable
"Hard" is something like NP-hard.

Enoodlag metworks

When giving an automata network to an algorithm, how shall we encode it?

Assumptions

- Alphabets are $\{0, \ldots, n-1\}$
- Neighbors of a node are ordered

Encoding

- A communication graph (adjacency matrix)
- One Boolean circuit per node
- States encoded in binary

Nodes are allowed to ignore a neighbor \neq interaction graph.

Fitst-Ordes properties

Definition (First-order property)

- $\forall x: \phi \quad$ "for all configuration x ": variables denote configurations
- $T(x, y)$ " x transitions to y in one step"
- $x=y$
- $\phi_{1} \wedge \phi_{2}$
- $\neg \phi$

Examples

- Fixed point. $\exists x: T(x, x)$
- 3-cycle. $\exists x_{1}, x_{2}, x_{3}: T\left(x_{1}, x_{2}\right) \wedge T\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right)$
- Injectivity. $\forall x_{1}, x_{2}, y:\left[T\left(x_{1}, y\right) \wedge T\left(x_{2}, y\right)\right] \Longrightarrow\left[x_{1}=x_{2}\right]$
- Determinism. $\forall x, y_{1}, y_{2}:\left[T\left(x, y_{1}\right) \wedge T\left(x, y_{2}\right)\right] \Longrightarrow\left[y_{1}=y_{2}\right]$

Fitist-order propertes are hard

Definition (ϕ-Dynamics)

ϕ-DYNAMICS
Input: a deterministic automata network F
Question: does $\mathcal{G}_{F} \models \phi$?
Note: ϕ is not part of the input!

Theorem (ГGPT, 2020)
For a fixed ϕ, the problem ϕ-Dynamics is either $O(1)$, or NP-hard, or coNP-hard.

A rednetion to SAT

Fix ϕ once and for all.

Theorem (ГGPT, 2020)

The problem ϕ-Dynamics is either $O(1)$, or NP-hard, or coNP-hard.

Let \sqcup denote the disjoint union.

Lemma

ϕ-Dynamics is NP-hard if there are G, J, D with $|J|=|D|$ and:

$$
\begin{aligned}
& G \sqcup J \sqcup J \sqcup \cdots \sqcup J \sqcup \cdots \sqcup J \not \vDash \phi, \\
& G \sqcup J \sqcup J \sqcup \cdots \sqcup D \sqcup \cdots \sqcup J \neq \phi .
\end{aligned}
$$

"You can have Jillions of J's, but one D makes a Difference."

A redmetion to SAT

Lemma

ϕ-Dynamics is NP-hard if there are G, J, D with $|J|=|D|$ and:

$$
\begin{aligned}
& J \sqcup J \sqcup \cdots \sqcup J \sqcup \cdots \sqcup J \not \vDash \phi, \\
& J \sqcup J \sqcup \cdots \sqcup D \sqcup \cdots \sqcup J \models \phi,
\end{aligned}
$$

Let S denote an instance of SAT with s variables.
Make a network with $s+1$ automata f_{0}, \ldots, f_{s}.
Alphabets: f_{0} over $\{1, \ldots,|J|\}$ and f_{1}, \ldots, f_{s} over $\{0,1\}$.
Update: f_{0} evaluates $S\left(f_{1} \ldots f_{s}\right)$;

- if it finds 0 , it realizes J,
- if it finds 1 , it realizes D.

10/27

A redmetion to SAT

Let S denote an instance of SAT with s variables.
Make a network with $s+1$ automata f_{0}, \ldots, f_{s}.
Alphabets: f_{0} over $\{1, \ldots,|J|\}$ and f_{1}, \ldots, f_{s} over $\{0,1\}$.
Update: f_{0} evaluates $S\left(f_{1} \ldots f_{s}\right)$;

- if it finds 0 , it realizes J,
- if it finds 1 , it realizes D.

Claim 1

The dynamics has a copy of D per positive assignment for S, and a copy of J per negative assignment for S.

Claim 2
This network is producible in polynomial time.

Fundtag Gs Ω_{3} D

Our next mission is to find G, J, D as announced.

Determinism

13/27

Elementany equivalence

Let m denote the rank of ϕ (its number of quantifiers), and G_{1}, G_{2} be graphs.

Definition (Elementary equivalence)

Write $G_{1} \equiv{ }_{m} G_{2}$ iff G_{1}, G_{2} satisfy the same formulae of rank m.
Lemma (Fraïssé, 1953)
The relation \equiv_{m} has finitely many classes: $\alpha_{1}, \ldots, \alpha_{a(m)}$.

Elementary equivalence

Let m denote the rank of ϕ (its number of quantifiers), and G_{1}, G_{2} be graphs.

Definition (Elementary equivalence)

Write $G_{1} \equiv_{m} G_{2}$ iff G_{1}, G_{2} satisfy the same formulae of rank m.

Lemma (Fraïssé, 1953)

The relation \equiv_{m} has finitely many classes: $\alpha_{1}, \ldots, \alpha_{a(m)}$.

Definition (Dulc)

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

15/27

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

$\bullet \bullet$	1
$\bullet \bullet$	1
$\bullet \bullet$	1
$\bullet \bullet$	1

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

$\bullet \bullet$	2
$\bullet \bullet$	1
$\bullet \bullet$	1
$\bullet \bullet$	1

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Proffles

Let $e=2 \cdot 3^{m}+1$ and $\infty=m \cdot e$.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at $m \cdot e$.

Theorem (ГGPT, 2020)

If $\operatorname{Dulc}\left(G_{1}\right)$ and $\operatorname{Dulc}\left(G_{2}\right)$ have same profile, then $G_{1} \equiv_{m} G_{2}$.

Ordertug profles

Let π_{1}, π_{2} denote profiles.
Write $\pi_{1} \leq \pi_{2}$ iff for all s, we have $\pi_{1}(s) \leq \pi_{2}(s)$.

Facts

There are finitely many profiles.
There is a minimal profile (\perp) and a maximal profile (T). Each profile is either ϕ-positive or ϕ-negative.

Findtag Gs $\underbrace{}_{0}$ D

Assume ϕ has infinitely many positive and negative instances. (Otherwise, ϕ-Dynamics is $O(1)$.)

Assume T is ϕ-positive.
(Otherwise, consider $\neg \phi$ and get coNP-hardness.)

Proof (Existence of J and D)

Infinitely many negative graphs, but finitely many negative profiles.
There's a negative profile π such that $\pi(\widetilde{J})=\infty$ for some \tilde{J}.
Take a maximal such π. (Any $\pi^{\prime}>\pi$ is positive.)

- Let G be a graph with profile π.
- Let J be a graph with profile \widetilde{J}. (So G and $G \sqcup J$ have same profile.)
- Let D be any graph such that $\pi(D)<\infty$.

Fitst-order propertes are hard

Theorem (ГGPT, 2020)
ϕ-Dynamics is either $O(1)$, or NP-hard, or coNP-hard

Fitist-order propertes are hard

Theorem (ГGPT, 2020)

ϕ-Dynamics is either $O(1)$, or NP-hard, or coNP-hard
The same applies to other problems:
ϕ-Bijective-Dynamics
Input: an deterministic automata network F
Promise: F is bijective
Question: does $\mathcal{G}_{F} \models \phi$?
ϕ-Limit-Dynamics
Input: an deterministic automata network F
Question: does the limit graph of F satisfy ϕ ?

Ofher thugs ar elso hard

Theorem (ГGPT, 2020)

Let ℓ be a level of PH.
There is a formula ϕ_{ℓ} such that ϕ_{ℓ}-Dynamics is ℓ-hard.

Ofher things are also hard

Theorem (ГGPT, 2020)

Let ℓ be a level of PH.
There is a formula ϕ_{ℓ} such that ϕ_{ℓ}-Dynamics is ℓ-hard.

Theorem (ГGPT, 2020)

The following problem is PSPACE-complete:
AN-Dynamics
Input: a network F and a first-order formula ϕ
Question: does $\mathcal{G}_{F} \models \phi$?
(This time, ϕ is part of the input!)
19/27

Momedie Secomd-Order properties

Definition (Monadic Second-Order property)

- $\forall x: \phi$
- $\forall \mathbf{X}: \phi \quad$ "for all set of configurations \mathbf{X} "
- $x \in \mathbf{X} \quad$ " x belongs to \mathbf{X} "
- $T(x, y), \quad x=y$,
$\phi_{1} \wedge \phi_{2}$,
$\neg \phi$

Monedie Seaond-Order properties

Definition (Monadic Second-Order property)

- $\forall x: \phi$
- $\forall \mathbf{X}: \phi \quad$ "for all set of configurations \mathbf{X} "
- $x \in \mathbf{X} \quad$ " x belongs to \mathbf{X} "
- $T(x, y)$,
$x=y$,
$\phi_{1} \wedge \phi_{2}$,
$\neg \phi$

Examples

- Chains. $T^{*}(x, y):=\exists \mathbf{P}: x, y \in \mathbf{P} \wedge \forall z \in \mathbf{P}$:

$$
\begin{aligned}
& \operatorname{deg}_{\mathbf{P}}^{+}(x)=1, \operatorname{deg}_{\mathbf{P}}^{-}(x)=0, \\
& \operatorname{deg}_{\mathbf{P}}^{+}(y)=0, \operatorname{deg}_{\mathbf{P}}^{-}(y)=1 \text {, } \\
& \operatorname{deg}_{\mathbf{P}}^{+}(z)=1, \operatorname{deg}_{\mathbf{P}}^{+}(z)=1 .
\end{aligned}
$$

- Connexity. $\forall x, y: T^{*}(x, y) \wedge T^{*}(y, x)$.

The adynamios' problem over MSSO

Now fix ψ an MSO formula.

Definition (ψ-MSO-Dynamics)
ψ-MSO-Dynamics
Input: a nondeterministic network F
Question: does $\mathcal{G}_{F} \models \psi$?

Question

What is the complexity of ψ-MSO-Dynamics?

Can we find G, J, D for an arbitrary fixed MSO formula ψ ?

Onflversel D for MSO

Proposition (Bonnet, ГGPT, 2021)

For all m, there's a graph D_{m} such that for all ψ of rank m, either:

- for all G, we have $G \sqcup D_{m}=\psi$; or
- for all G, we have $G \sqcup D_{m} \not \vDash \psi$.

We have a "universal D " that only depends on the rank of ψ !
We might need to consider $\neg \psi$, though.

Onfiversel D for MSO

Proposition (Bonnet, IGPT, 2021)

For all m, there's a graph D_{m} such that for all ψ of rank m, either: for all G, we have $G \sqcup D_{m} \models \psi$; or for all G, we have $G \sqcup D_{m} \not \models \psi$.

Lemma 1 (cf. Courcelle's book)

The relation \equiv_{m} for MSO has finitely many classes $\alpha_{1}, \ldots, \alpha_{a(m)}$.

Lemma 2

For all G, there's an integer p such that $\bigsqcup^{p} G \equiv_{m} \bigsqcup^{p+1} G$.

Proof (Proposition)

Let $A_{1}, \ldots, A_{a(m)}$ be representatives of $\alpha_{1}, \ldots, \alpha_{a(m)}$.
Let \mathbf{p} be the max p given by Lemma 2 over $A_{1}, \ldots, A_{a(m)}$.

$$
D_{m}=\bigsqcup_{i=1}^{a(m)} \bigsqcup^{\mathrm{p}} A_{i}
$$

Tree decompostifos

Figure 1: Tree decomposition of width 2 for example graph G. This is the minimum possible treewidth, since G contains a K_{3} as a minor.
http://www.mamicode.com/info-detail-2237033.html

Gy for MSO

Let k denote an arbitrary integer.

Proposition (ГGPT, 2021)

If ψ has an infinity of models and countermodels of treewidth $\leq k$, then there are suitable G and J.

Theorem (Courcelle)

For all ψ, k, there is a tree automaton testing ψ when run on tree decompositions with bags of size k.

Proof (Proposition)

Find the tree automaton for ψ and k and use a pumping lemma.
> (We need to replace \bigsqcup with a more complicated "gluing" operator.)

Many MSO formulee are hard

Let k denote an arbitrary integer.

Theorem (ГGPT, 2021)

If ψ has an infinity of models and countermodels of treewidth $\leq k$, then ψ-Dynamics is either NP- or coNP-hard.

Many MSO formulee are hard

Let k denote an arbitrary integer.

Theorem (ГGPT, 2021)

If ψ has an infinity of models and countermodels of treewidth $\leq k$, then ψ-Dynamics is either NP- or coNP-hard.

What about ψ not satisfying that condition?

- Those with finitely many (counter)models are $O(1)$.
- The other ones are trick (e.g. CLIQUE)...
- The pumping techniques do not work anymore for them.

Perspectives

- The last case of the MSO theorem
- The Boolean case (or other fixed alphabet)
- Other update modes
- Other logics (Counting...)
- Your question here

Thank you for your attention!

