Complexity of maximum and minimum fixed point problems in Boolean networks

Adrien Richard
I3S laboratory, CNRS, Nice, France

joint work with
Florian Bridoux, Amélia Durbec \& Kévin Perrot
LIS laboratory, CNRS, Marseille, France

AUTOMATA \& WAN 2021
Marseille, Jyly 12-17

Boolean Network (BN)

The local functions of $f:\{0,1\}^{3} \rightarrow\{0,1\}^{3}$ are defined by

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{2} \vee x_{3} \\
f_{2}(x)=\overline{x_{1}} \wedge \overline{x_{3}} \\
f_{3}(x)=\overline{x_{3}} \wedge\left(x_{1} \vee x_{2}\right)
\end{array}\right.
$$

Synchronous dynamics

Interaction graph

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem
Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
\hookrightarrow Talk of Stéphanie Chevalier
\hookrightarrow Dynamical properties often concern the number of fixed points.
\hookrightarrow Fixed points \sim phenotypes \rightarrow talk of Sergiu Ivanov.
Boolean Network Consistency Problem
Input: A Boolean network f and a dynamical property P.
Question: Does the dynamics of f satisfies P ?

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
\hookrightarrow Talk of Stéphanie Chevalier
\hookrightarrow Dynamical properties often concern the number of fixed points.
\hookrightarrow Fixed points \sim phenotypes \rightarrow talk of Sergiu Ivanov.
Boolean Network Consistency Problem
Input: A Boolean network f and a dynamical property P.
Question: Does the dynamics of f satisfies P ?
\hookrightarrow Talks of Guilhem Gamard, Julio Aracena, Kévin Perrot.
$\hookrightarrow \mathrm{It}$ is NP-complete to decide if a BN has a fixed point [Kosub 2008].

Definitions

$$
\begin{aligned}
\max (G) & :=\text { maximum number of fixed points in a } \mathrm{BN} \text { on } G \\
\min (G) & :=\text { minimum number of fixed points in a } \mathrm{BN} \text { on } G
\end{aligned}
$$

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

$$
\begin{aligned}
& \max (G)=1 \\
& \min (G)=0
\end{aligned}
$$

x	$f^{1}(x)$	$f^{2}(x)$	$f^{3}(x)$	$f^{4}(x)$	$f^{5}(x)$	$f^{6}(x)$	$f^{7}(x)$	$f^{8}(x)$
000	100	100	100	100	100	100	100	100
001	000	$\mathbf{0 0 1}$	010	011	100	101	110	111
010	100	101	100	101	100	101	100	101
011	001	001	$\mathbf{0 1 1}$	$\mathbf{0 1 1}$	101	101	111	111
100	000	000	010	010	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	110	110
101	010	011	010	011	010	011	010	011
110	000	001	010	011	100	101	$\mathbf{1 1 0}$	111
111	011	011	011	011	011	011	011	011

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

$$
\begin{gathered}
\max (G)=3 \\
\min (G)=1 \\
(8 \mathrm{BNs})
\end{gathered}
$$

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

$$
\begin{gathered}
\max (G)=3 \\
\min (G)=1 \\
(8 \mathrm{BNs})
\end{gathered}
$$

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

k-MaxProblem: Given G, do we have $\max (G) \geq k$?
k-MinProblem: Given G, do we have $\min (G)<k$?

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polytime if G has a positive cycle.

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polytime if G has a positive cycle.

Corollary
We can decide in polytime if $\max (G) \geq 1$.

$\max (G) \geq 1 ?$

Theorem
$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polytime if G has a positive cycle.

Corollary
We can decide in polytime if $\max (G) \geq 1$.
Recall that it is NP-complete to decide if a BN has a fixed point.

$\max (G) \geq k ?$ for $k \geq 2$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

$\max (G) \geq k ?$ for $k \geq 2$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

$\max (G) \geq k ?$ for $k \geq 2$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a fast check of $\max (G) \geq 2$?

$\max (G) \geq k ?$ for $k \geq 2$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a fast check of $\max (G) \geq 2$?

Theorem

It is NP-complete to decide if $\max (G) \geq 2$.

$\max (G) \geq k ?$ for $k \geq 2$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a fast check of $\max (G) \geq 2$?

Theorem

It is NP-complete to decide if $\max (G) \geq 2$.
It is NP-complete to decide if $\max (G) \geq k$ for every fixed $k \geq 2$.

$\max (G) \geq k ?$ is in NP

Theorem [Perrot, R. 2021]
There is an algorithm with the following specifications:
Input: G and k pairs of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: Decide if there is a BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$. Running time: $n^{O\left(k^{2}\right)}$.

$\max (G) \geq k ?$ is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:
Input: G and k pairs of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: Decide if there is a BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$. Running time: $n^{O\left(k^{2}\right)}$.

As a consequence $\max (G) \geq k$? is in NP, because of the following algo:

- guess k states x^{1}, \ldots, x^{k}.
- give G and the pairs $\left(x^{1}, x^{1}\right), \ldots,\left(x^{k}, x^{k}\right)$ to the previous algo.
- report the given result.

$\max (G) \geq k ?$ is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:
Input: G and k pairs of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: Decide if there is a BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$. Running time: $n^{O\left(k^{2}\right)}$.

As a consequence $\max (G) \geq k$? is in NP, because of the following algo:

- guess k states x^{1}, \ldots, x^{k}.
- give G and the pairs $\left(x^{1}, x^{1}\right), \ldots,\left(x^{k}, x^{k}\right)$ to the previous algo.
- report the given result.
\hookrightarrow There is an excepting branch if and only if $\max (G) \geq k$.
\hookrightarrow The running time is $n^{O\left(k^{2}\right)}$ thus polynomial since k is fixed.

$\max (G) \geq 2 ?$ is NP-hard

$\max (G) \geq 2 ?$ is NP-hard

Theorem

Given a CNF formula ϕ, we can built in polytime G_{ϕ} such that

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

$\max (G) \geq 2 ?$ is NP-hard

Theorem

Given a CNF formula ϕ, we can built in polytime G_{ϕ} such that

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

Basic observation:

$\max (G) \geq 2$? is NP-hard

Theorem

Given a CNF formula ϕ, we can built in polytime G_{ϕ} such that

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

Basic observation:

The idea is to "control" with ϕ the "effectiveness" of the negative chord, so that the chord can be "ineffective" if and only if ϕ is satisfiable.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

2 fixed points

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

$$
\text { Example with } \phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c}) .
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$$
\begin{array}{ll}
G_{\phi} & \text { (1) } f_{s}=1
\end{array}
$$

$$
\phi \text { is sat. } \Rightarrow \max (G) \geq 2
$$

Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$$
\begin{array}{ll}
G_{\phi} & \text { (1) } f_{s}=1
\end{array}
$$

$$
\phi \text { is sat. } \Rightarrow \max (G) \geq 2
$$

Consider a true assignment:

$$
a=1, b=1, c=0
$$

Isolated positive cycle

2 fixed points

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$
$\bigcirc \bigcirc \bigcirc$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$
\bigcirc

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$
\bigcirc

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y

$$
\begin{aligned}
& \text { (i) } x_{i}<y_{i} \\
& \text { (i) } \\
& x_{i}>y_{i} \\
& \text { (i) } \\
& x_{i}=y_{i} \\
& \text { (i) } \\
& x_{i} \leq y_{i}
\end{aligned}
$$

$$
\begin{aligned}
& a=1, b=0, c=0 \\
& a=1, b=1, c=0
\end{aligned}
$$

are true assignments of ϕ

Summary

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.

Summary

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G)<k$?

Summary

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G)<k$?

Theorem

k-MinProblem is NEXPTIME-complete for every k.

Summary

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G)<k$?

Theorem

k-MinProblem is NEXPTIME-complete for every k.

It is NEXPTIME-complete to decide if $\min (G)=0$.

Summary

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G)<k$?

Theorem

k-MinProblem is NEXPTIME-complete for every k.

It is NEXPTIME-complete to decide if $\min (G)=0$.
The reduction is from SuccinctSAT and (much more) technical.

Free k

MaxProblem: Given G and \boldsymbol{k}, do we have $\max (G) \geq k$?

MinProblem: Given G and \boldsymbol{k}, do we have $\min (G)<k$?

Free k

MaxProblem: Given G and \boldsymbol{k}, do we have $\max (G) \geq k$?

MinProblem: Given G and \boldsymbol{k}, do we have $\min (G)<k$?

Theorem

MaxProblem and MinProblem are NEXPTIME-complete.

Reduction to SuccinctSat

A succinct representation of $\phi=(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee \bar{c})$:

Reduction to SuccinctSat

A succinct representation of $\phi=(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee \bar{c})$:

Theorem

Given a succinct CNF formula ϕ with m clauses we can built in polytime H_{ϕ} such that

$$
\max \left(H_{\phi}\right) \geq 2^{m+1} \Longleftrightarrow \phi \text { is satisfiable }
$$

Reduction to SuccinctSat

The interaction graph H_{ϕ} for $\phi=(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee \bar{c})$.

Overview

Problem	$k=1$	$k \geq 2$ fixed	k part of the input	
$\max (G) \geq k$	P	NP-complete	NEXPTIME-complete	
$\min (G)<k$	NEXPTIME-complete			

Overview

Problem	$k=1$	$k \geq 2$ fixed	k part of the input	
$\max (G) \geq k$	P	NP-complete	NEXPTIME-complete	
$\min (G)<k$	NEXPTIME-complete			

When the maximum in-degree of G is bound by a constant $d \geq 2$:

Problem	$k=1$	$k \geq 2$ fixed	k part of the input
$\max (G) \geq k$	\mathbf{P}	$\mathbf{N P}^{2}$-complete	$\mathbf{N P}^{\# \mathbf{P}_{-}}$-complete
$\min (G)<k$	$\mathbf{N P}^{\mathbf{N P}}$-complete		$\mathbf{N P}^{\text {\#P }}$-complete

Positive Feedback Bound

Let $\tau^{+}(G)$ be the min nb of vertices delete to make G positive cycle-free.
An important result concerning fixed points in BNs is:
Positive Feedback Bound [Aracena 2008]

$$
\max (G) \leq 2^{\tau^{+}(G)}
$$

Positive Feedback Bound

Let $\tau^{+}(G)$ be the min nb of vertices delete to make G positive cycle-free.
An important result concerning fixed points in BNs is:
Positive Feedback Bound [Aracena 2008]

$$
\max (G) \leq 2^{\tau^{+}(G)}
$$

Theorem

It is NEXPTIME-complete to decide if $\max (G)=2^{\tau^{+}(G)}$.

Conclusion

We study, from a complexity point of view, a natural class of problems.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P. Question: Is there a BN on G with a dynamics satisfying P ?

We obtain exact classes of complexity for this problem when

- P is "to have at least/most k fixed points",
- k is fixed or free,
- the maximum in-degree of G is bounded or not.

Conclusion

We study, from a complexity point of view, a natural class of problems.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P. Question: Is there a BN on G with a dynamics satisfying P ?

We obtain exact classes of complexity for this problem when

- P is "to have at least/most k fixed points",
- k is fixed or free,
- the maximum in-degree of G is bounded or not.

Perspectives

1. Other dynamical properties.
\hookrightarrow number/size of cyclic attractors in the (a)synchronous case.
2. Non-Boolean case and unsigned case.
