Complexity of maximum and minimum fixed point problems in Boolean networks

Adrien Richard

I3S laboratory, CNRS, Nice, France

joint work with

Florian Bridoux, Amélia Durbec & Kévin Perrot

LIS laboratory, CNRS, Marseille, France

AUTOMATA & WAN 2021

Marseille, Jyly 12-17

Maximum/Minimum Fixed Point Problem

Boolean Network (BN)

The local functions of $f:\{0,1\}^3 \rightarrow \{0,1\}^3$ are defined by

$$\begin{cases} f_1(x) &= x_2 \lor x_3\\ f_2(x) &= \overline{x_1} \land \overline{x_3}\\ f_3(x) &= \overline{x_3} \land (x_1 \lor x_2) \end{cases}$$

Synchronous dynamics

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

- $\hookrightarrow \mathsf{Talk} \text{ of Stéphanie Chevalier}$
- \hookrightarrow Dynamical properties often concern the **number of fixed points**.
- \hookrightarrow **Fixed points** \sim **phenotypes** \rightarrow talk of Sergiu Ivanov.

BOOLEAN NETWORK CONSISTENCY PROBLEM

Input: A Boolean network f and a dynamical property P.

Question: Does the dynamics of f satisfies P?

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

- $\hookrightarrow \mathsf{Talk} \text{ of Stéphanie Chevalier}$
- \hookrightarrow Dynamical properties often concern the number of fixed points.
- \hookrightarrow **Fixed points** \sim **phenotypes** \rightarrow talk of Sergiu Ivanov.

BOOLEAN NETWORK CONSISTENCY PROBLEM

Input: A Boolean network f and a dynamical property P. **Question:** Does the dynamics of f satisfies P?

 \hookrightarrow Talks of Guilhem Gamard, Julio Aracena, Kévin Perrot.

 \hookrightarrow It is **NP-complete** to decide if a BN has a fixed point [Kosub 2008].

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

 $\max(G) = 1$ $\min(G) = 0$

x	$\int f^1(x)$	$\int f^2(x)$	$f^3(x)$	$f^4(x)$	$f^5(x)$	$f^6(x)$	$f^7(x)$	$f^8(x)$
000	100	100	100	100	100	100	100	100
001	000	001	010	011	100	101	110	111
010	100	101	100	101	100	101	100	101
011	001	001	011	011	101	101	111	111
100	000	000	010	010	100	100	110	110
101	010	011	010	011	010	011	010	011
110	000	001	010	011	100	101	110	111
111	011	011	011	011	011	011	011	011

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

k-MAXPROBLEM: Given G, do we have $\max(G) \ge k$?

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

k-MAXPROBLEM: Given G, do we have $\max(G) \ge k$?

k-MINPROBLEM: Given G, do we have $\min(G) < k$?

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polytime if G has a positive cycle.

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polytime if G has a positive cycle.

Corollary

We can decide in polytime if $\max(G) \ge 1$.

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polytime if G has a positive cycle.

Corollary

We can decide in polytime if $\max(G) \ge 1$.

Recall that it is NP-complete to decide if a BN has a fixed point.

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a fast check of $max(G) \ge 2$?

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $\max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a fast check of $max(G) \ge 2$?

Theorem

It is **NP-complete** to decide if $\max(G) \ge 2$.

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a fast check of $max(G) \ge 2$?

Theorem

It is **NP-complete** to decide if $max(G) \ge 2$.

It is **NP-complete** to decide if $max(G) \ge k$ for every fixed $k \ge 2$.

$\max(G) \ge k?$ is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:

Input: G and k pairs of states $(x^1, y^1) \dots (x^k, y^k)$. Output: Decide if there is a BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$. Running time: $n^{O(k^2)}$.

$\max(G) \ge k?$ is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:

Input: G and k pairs of states $(x^1, y^1) \dots (x^k, y^k)$. **Output:** Decide if there is a BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$. **Running time:** $n^{O(k^2)}$.

As a consequence $max(G) \ge k$? is in **NP**, because of the following algo:

- guess k states x^1, \ldots, x^k .
- give G and the pairs $(x^1,x^1),\ldots,(x^k,x^k)$ to the previous algo.
- report the given result.

$\max(G) \ge k?$ is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:

Input: G and k pairs of states $(x^1, y^1) \dots (x^k, y^k)$. **Output:** Decide if there is a BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$. **Running time:** $n^{O(k^2)}$.

As a consequence $max(G) \ge k$? is in **NP**, because of the following algo:

- guess k states x^1, \ldots, x^k .
- give G and the pairs $(x^1,x^1),\ldots,(x^k,x^k)$ to the previous algo.
- report the given result.
- \hookrightarrow There is an excepting branch if and only if $\max(G) \ge k$.
- \hookrightarrow The running time is $n^{O(k^2)}$ thus polynomial since k is fixed.

Theorem

Given a CNF formula ϕ , we can built in polytime G_{ϕ} such that

 $\max(G_{\phi}) \geq 2 \iff \phi$ is satisfiable

Theorem

Given a CNF formula ϕ , we can built in polytime G_{ϕ} such that

 $\max(G_{\phi}) \geq 2 \iff \phi$ is satisfiable

Basic observation:

Theorem

Given a CNF formula ϕ , we can built in polytime G_{ϕ} such that

 $\max(G_{\phi}) \geq 2 \iff \phi$ is satisfiable

Basic observation:

The idea is to "control" with ϕ the "effectiveness" of the negative chord, so that the chord can be "ineffective" if and only if ϕ is satisfiable.

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Consider a true assignment: a = 1, b = 1, c = 0

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Consider a true assignment: a = 1, b = 1, c = 0

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Consider a true assignment: a = 1, b = 1, c = 0
Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Consider a true assignment: a = 1, b = 1, c = 0

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Consider a true assignment: a = 1, b = 1, c = 0

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$ (1) $f_s = 1$ G_{ϕ} ϕ is sat. $\Rightarrow \max(G) > 2$ Consider a true assignment: 1)OR 1)OR c) AND a = 1, b = 1, c = 0O AND O AND O AND O AND \overline{b} 1)OR AND 1 OR 1 OR

OR

OR

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

$$\label{eq:general} \begin{split} \max(G) \geq 2 \Rightarrow \phi \text{ is sat.} \\ \text{Let } f \text{ be a BN on } G \text{ with} \end{split}$$

two fixed points: x and y

$$\begin{array}{ccc} i & x_i < y_i \\ \hline i & x_i > y_i \\ \hline i & x_i = y_i \\ \hline i & x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and y i $x_i < y_i$ $x_i > y_i$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

$$\begin{array}{ccc} & i & x_i < y_i \\ \hline & i & x_i > y_i \\ \hline & i & x_i = y_i \\ \hline & i & x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and y(i) $x_i < y_i$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

$$\begin{array}{ccc} i & x_i < y_i \\ \hline i & x_i > y_i \\ \hline i & x_i = y_i \\ \hline i & x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

$$\label{eq:max} \begin{split} \max(G) \geq 2 \Rightarrow \phi \text{ is sat.} \\ \text{Let } f \text{ be a BN on } G \text{ with} \\ \text{two fixed points: } x \text{ and } y \end{split}$$

$$\begin{array}{ccc} \mathbf{i} & x_i < y_i \\ \mathbf{i} & x_i > y_i \\ \mathbf{i} & x_i = y_i \\ \mathbf{i} & x_i \leq y_i \end{array}$$

a = 1, b = 0, c = 0a = 1, b = 1, c = 0

are true assignments of ϕ

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) < k$?

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) < k$?

Theorem *k*-MINPROBLEM is **NEXPTIME-complete** for every *k*.

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) < k$?

Theorem

k-MINPROBLEM is **NEXPTIME-complete** for every k.

It is **NEXPTIME-complete** to decide if min(G) = 0.

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) < k$?

Theorem

k-MINPROBLEM is **NEXPTIME-complete** for every k.

It is **NEXPTIME-complete** to decide if min(G) = 0.

The reduction is from SUCCINCTSAT and (much more) technical.

Adrien RICHARD

MAXPROBLEM: Given G and k, do we have $max(G) \ge k$?

MINPROBLEM: Given G and k, do we have $\min(G) < k$?
MAXPROBLEM: Given G and k, do we have $max(G) \ge k$?

MINPROBLEM: Given G and k, do we have $\min(G) < k$?

Theorem

MAXPROBLEM and MINPROBLEM are **NEXPTIME-complete**.

Reduction to SUCCINCTSAT

A succinct representation of $\phi = (a \lor \overline{b} \lor \overline{c}) \land (\overline{a} \lor \overline{c})$:

Reduction to SUCCINCTSAT

A succinct representation of $\phi = (a \lor \overline{b} \lor \overline{c}) \land (\overline{a} \lor \overline{c})$:

Theorem

Given a succinct CNF formula ϕ with m clauses we can built in polytime H_ϕ such that

$$\max(H_{\phi}) \ge 2^{m+1} \iff \phi$$
 is satisfiable

Reduction to $\operatorname{SuccinctSat}$

The interaction graph H_{ϕ} for $\phi = (a \lor \overline{b} \lor \overline{c}) \land (\overline{a} \lor \overline{c})$.

Overview

Problem	k = 1	$k \geq 2$ fixed	k part of the input	
$\max(G) \ge k$	Р	NP-complete	NEXPTIME-complete	
$\min(G) < k$	NEXPTIME-complete			

Overview

Problem	k = 1	$k \geq 2$ fixed	k part of the input	
$\max(G) \ge k$	Р	NP-complete	NEXPTIME-complete	
$\min(G) < k$	NEXPTIME-complete			

When the maximum in-degree of G is bound by a constant $d \ge 2$:

Problem	k = 1	$k \geq 2$ fixed	k part of the input
$\max(G) \ge k$	Р	NP-complete	NP ^{#P} -complete
$\min(G) < k$	NP ^{NP} -complete		NP ^{#P} -complete

Positive Feedback Bound

Let $\tau^+(G)$ be the min nb of vertices delete to make G positive cycle-free. An important result concerning fixed points in BNs is:

Positive Feedback Bound [Aracena 2008]

 $\max(G) \le 2^{\tau^+(G)}.$

Positive Feedback Bound

Let $\tau^+(G)$ be the min nb of vertices delete to make G positive cycle-free. An important result concerning fixed points in BNs is:

Positive Feedback Bound [Aracena 2008]

 $\max(G) \le 2^{\tau^+(G)}.$

Theorem

It is **NEXPTIME-complete** to decide if $\max(G) = 2^{\tau^+(G)}$.

Conclusion

We study, from a complexity point of view, a natural class of problems.

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

- P is "to have at least/most k fixed points",
- k is fixed or free,
- the maximum in-degree of G is bounded or not.

Conclusion

We study, from a complexity point of view, a natural class of problems.

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

- P is "to have at least/most k fixed points",
- k is fixed or free,
- the maximum in-degree of G is bounded or not.

Perspectives

1. Other dynamical properties.

 \hookrightarrow number/size of cyclic attractors in the (a)synchronous case.

2. Non-Boolean case and unsigned case.