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Boolean Network (BN)

The local functions of f : {0, 1}3 → {0, 1}3 are defined by f1(x) = x2 ∨ x3

f2(x) = x1 ∧ x3

f3(x) = x3 ∧ (x1 ∨ x2)
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BNs are classical models for gene networks. When biologists study a
gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P .

Question: Is there a BN on G with a dynamics satisfying P?

↪→ Talk of Stéphanie Chevalier

↪→ Dynamical properties often concern the number of fixed points.

↪→ Fixed points ∼ phenotypes → talk of Sergiu Ivanov.

Boolean Network Consistency Problem

Input: A Boolean network f and a dynamical property P .

Question: Does the dynamics of f satisfies P?

↪→ Talks of Guilhem Gamard, Julio Aracena, Kévin Perrot.

↪→ It is NP-complete to decide if a BN has a fixed point [Kosub 2008].
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

1 2

3

max(G) = 1
min(G) = 0

x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)
000 100 100 100 100 100 100 100 100
001 000 001 010 011 100 101 110 111
010 100 101 100 101 100 101 100 101
011 001 001 011 011 101 101 111 111
100 000 000 010 010 100 100 110 110
101 010 011 010 011 010 011 010 011
110 000 001 010 011 100 101 110 111
111 011 011 011 011 011 011 011 011

1 2

3

max(G) = 3

min(G) = 1

(8 BNs)

1 2

3

max(G) = 2

min(G) = 2

(8 BNs)

k-MaxProblem: Given G, do we have max(G) ≥ k?

k-MinProblem: Given G, do we have min(G) < k?
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max(G) ≥ 1?

Theorem

max(G) ≥ 1 iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]

We can decide in polytime if G has a positive cycle.

Corollary

We can decide in polytime if max(G) ≥ 1.

Recall that it is NP-complete to decide if a BN has a fixed point.
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max(G) ≥ k? for k ≥ 2

According to Thomas, max(G) ≥ 2 means that G can be the interaction
graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If max(G) ≥ 2, then G has a positive cycle.

2. If G has only positive cycles and no source, then min(G) ≥ 2.

Can we hope for a fast check of max(G) ≥ 2?

Theorem

It is NP-complete to decide if max(G) ≥ 2.

It is NP-complete to decide if max(G) ≥ k for every fixed k ≥ 2.
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max(G) ≥ k? is in NP

Theorem [Perrot, R. 2021]

There is an algorithm with the following specifications:

Input: G and k pairs of states (x1, y1) . . . (xk, yk).

Output: Decide if there is a BN f on G with f(x`) = y` for 1 ≤ ` ≤ k.

Running time: nO(k2).

As a consequence max(G) ≥ k? is in NP, because of the following algo:

- guess k states x1, . . . , xk.

- give G and the pairs (x1, x1), . . . , (xk, xk) to the previous algo.

- report the given result.

↪→ There is an excepting branch if and only if max(G) ≥ k.

↪→ The running time is nO(k2) thus polynomial since k is fixed.
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max(G) ≥ 2? is NP-hard

Theorem

Given a CNF formula φ, we can built in polytime Gφ such that

max(Gφ) ≥ 2 ⇐⇒ φ is satisfiable

Basic observation:

2 fixed points 1 fixed point

The idea is to “control” with φ the “effectiveness” of the negative chord,
so that the chord can be “ineffective” if and only if φ is satisfiable.
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max(G) ≥ 2? is NP-hard

Example with φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).

a

ā

b

b̄

c

c̄
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Example with φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).

a

ā

b

b̄

c

c̄

2 fixed points
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max(G) ≥ 2? is NP-hard

Example with φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).

a

ā

b

b̄

c

c̄

C1
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max(G) ≥ 2? is NP-hard

Example with φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).

s

a

ā

b

b̄

c

c̄

C1 C2

Gφ

φ is sat. ⇒ max(G) ≥ 2

Consider a true assignment:
a = 1, b = 1, c = 0
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s

a

ā
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ā

1

b̄

c

1

1 C2

Gφ

φ is sat. ⇒ max(G) ≥ 2

Consider a true assignment:
a = 1, b = 1, c = 0

fs = 1

OR

AND

OR

AND

AND

OR

AND AND AND AND

OR OR

OR OR

Adrien RICHARD Maximum/Minimum Fixed Point Problem WAN 2021 Marseille 10/18



max(G) ≥ 2? is NP-hard

Example with φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).

1

1

ā
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a = 1, b = 0, c = 0
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are true assignments of φ

a = 1
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Summary

k-MaxProblem: Given G, do we have max(G) ≥ k?

Theorem

k-MaxProblem is in P if k ≤ 1 and NP-complete if k ≥ 2.

k-MinProblem: Given G, do we have min(G) < k?

Theorem

k-MinProblem is NEXPTIME-complete for every k.

It is NEXPTIME-complete to decide if min(G) = 0.

The reduction is from SuccinctSAT and (much more) technical.
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Free k

MaxProblem: Given G and k, do we have max(G) ≥ k?

MinProblem: Given G and k, do we have min(G) < k?

Theorem

MaxProblem and MinProblem are NEXPTIME-complete.
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Reduction to SuccinctSat

A succinct representation of φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄):

u1 p1 p2 v1 v2 w1 w2 ρ

OR AND

clause position

input output

variable polarity

Theorem

Given a succinct CNF formula φ with m clauses we can built in polytime
Hφ such that

max(Hφ) ≥ 2m+1 ⇐⇒ φ is satisfiable
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Reduction to SuccinctSat

The interaction graph Hφ for φ = (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄).
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Overview

Problem k = 1 k ≥ 2 fixed k part of the input

max(G) ≥ k P NP-complete NEXPTIME-complete

min(G) < k NEXPTIME-complete

When the maximum in-degree of G is bound by a constant d ≥ 2:

Problem k = 1 k ≥ 2 fixed k part of the input

max(G) ≥ k P NP-complete NP#P-complete

min(G) < k NPNP-complete NP#P-complete
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Positive Feedback Bound

Let τ+(G) be the min nb of vertices delete to make G positive cycle-free.

An important result concerning fixed points in BNs is:

Positive Feedback Bound [Aracena 2008]

max(G) ≤ 2τ
+(G).

Theorem

It is NEXPTIME-complete to decide if max(G) = 2τ
+(G).
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Conclusion

We study, from a complexity point of view, a natural class of problems.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P .

Question: Is there a BN on G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

- P is “to have at least/most k fixed points”,

- k is fixed or free,

- the maximum in-degree of G is bounded or not.

Perspectives

1. Other dynamical properties.

↪→ number/size of cyclic attractors in the (a)synchronous case.

2. Non-Boolean case and unsigned case.
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