

Complexity of limit-cycles in conjunctive Boolean networks

Julio Aracena¹

Joint work with Florian Bridoux², Luis Gómez³ and Lilian Salinas¹ ¹Universidad de Concepción, Chile ² Université Aix-Marseille, France ³ Universidad del Bío-Bío, Chile

WAN, 2021

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

A Boolean network (BN) with n components is a discrete dynamical system usually defined by a global transition function:

$$f: \{0,1\}^n \to \{0,1\}^n, x \to f(x) = (f_1(x), \dots, f_n(x)),$$

where each function $f_v : \{0,1\}^n \to \{0,1\}$ associated to the component v is called local activation function. We will say a Boolean network is conjunctive if $f_v(x) = \bigwedge_i x_i$.

The interaction graph G(f) = (V, A) is defined by: $V = \{1, ..., n\}$ and $A = \{(i, j) \in V \times V : f_j \text{ depends on } x_i\}.$

A limit cycle of f (with synchronous update schedule) is a sequence of configurations in $\{0,1\}^n [x^0,\ldots,x^p], p \ge 2$, such that $\forall i \in \{0,\ldots,p-1\}, x^{i+1} = f(x^i) \land x^0 = x^p$.

Definition

A block-sequential schedule is an ordered partition of the components of a Boolean network which defines the order in which the states of the network are updated in one unit of time.

Examples

$$\begin{split} s_1 &= \{3,4\}\{1\}\{2\},\\ s_2 &= \{1,2,3,4\},\\ s_3 &= \{2\}\{3\}\{4\}\{1\}. \end{split}$$

イロト イ団ト イヨト イヨ

Definition (Robert 86)

Let f be a Boolean network and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according s is given by:

$$\forall v \in B_1, \qquad \qquad x_v^{t+1} = f_v(x^t). \tag{1}$$

$$\forall v \in B_i, i > 1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : u \in \bigcup_{j=1}^{i-1} B_j; x_u^t : u \in \bigcup_{j=i}^m B_j)$$
(2)

イロト イ団ト イヨト イヨ

Definition (Robert 86)

Let f be a Boolean network and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according s is given by:

$$\forall v \in B_1, \qquad x_v^{t+1} = f_v(x^t). \tag{1}$$

$$\forall v \in B_i, i > 1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : u \in \bigcup_{j=1}^{i-1} B_j; x_u^t : u \in \bigcup_{j=i}^m B_j)$$
(2)

This is equivalent to applying a function f^s to x:

$$x^{t+1} = f^s(x^t)$$

Where we define f^s as the composition of updating f block by block:

$$f^s = f^{B_m} \circ f^{B_{m-1}} \circ \dots \circ f^{B_2} \circ f^{B_1}$$

where:

$$\forall x \in \{0,1\}^n, \quad f_v^{B_i}(x) = \begin{cases} x_v & \text{if } v \notin B_i \\ f_v(x) & \text{if } v \in B_i. \end{cases}$$

イロト イヨト イヨト イヨ

Definition (Robert 86)

Let f be a Boolean network and $s = B_1, B_2, \ldots, B_m$ a block-sequential update schedule. The dynamical behavior of f updated according s is given by:

$$\forall v \in B_1, \qquad \qquad x_v^{t+1} = f_v(x^t). \tag{1}$$

$$\forall v \in B_i, i > 1, \qquad x_v^{t+1} = f_v(x_u^{t+1} : u \in \bigcup_{j=1}^{i-1} B_j; x_u^t : u \in \bigcup_{j=i}^m B_j)$$
(2)

This is equivalent to applying a function f^s to x:

$$x^{t+1} = f^s(x^t)$$

Where we define f^s as the composition of updating f block by block:

$$f^s = f^{B_m} \circ f^{B_{m-1}} \circ \dots \circ f^{B_2} \circ f^{B_1}$$

where:

$$\forall x \in \{0,1\}^n, \quad f_v^{B_i}(x) = \begin{cases} x_v & \text{if } v \notin B_i \\ f_v(x) & \text{if } v \in B_i. \end{cases}$$

Remark: If f is a conjunctive network, then f^s too.

イロト イヨト イヨト イヨト

 $G(f^s)$ can be calculated in polynomial time (Goles and Noual, 2012).

Limit cycles are sensitive to changes in s

(Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009; Demongeot J., Elena, A., Sené, S., 2008; Macauley, M., Mortveit, H.S., 2009).

Image: A matching of the second se

Proposition (Goles and Noual, 2012)

Every conjunctive network f has a block-sequential update schedule s such that f^s has no limit cycle.

Example: Conjunctive network without limit cycles for every update schedule.

イロト イヨト イヨト イヨ

Proposition (Goles and Noual, 2012)

Every conjunctive network f has a block-sequential update schedule s such that f^s has no limit cycle.

Example: Conjunctive network without limit cycles for every update schedule.

Limit Cycle Existence problem (LCE): Given f a conjunctive network, does there exist a block-sequential update schedule s such that f^s has a limit cycle?

The existence of limit cycles in a conjunctive network f (with parallel update schedule) is related to the loop number of G(f).

Definition

Given G = (V, A) a non-trivial digraph with $V = \{1, ..., n\}$. The loop number (or index of cyclicity) of G, i(G), is defined by:

- If G is a non trivial strongly connected digraph,
 i(G) := gcd{l(c) : c is a cycle of G and l(c) is its length}.
- If G is not strongly connected with at least a cycle, i(G) := mcm{i(G_k) : G_k is a non-trivial strongly connected component of G}.
- i(G) = 0 otherwise.
- If i(G) = 1, then G is primitive.

Remark: i(G) can be calculated in polynomial time.

イロト イ団ト イヨト イヨト

Examples. Given the following digraphs:

Then the loop numbers are:

・ロト ・日 ・ ・ ヨト ・

Examples. Given the following digraphs:

・ロト ・日 ・ ・ ヨト ・

Ś

Examples. Given the following digraphs:

イロト イヨト イヨト イ

\$

Examples. Given the following digraphs:

Then the loop numbers are: $i(G_1) = 6$, $i(G_2) = 2$ y $i(G_3) = 1$.

Remark: if G is strongly connected and has a loop, then G is primitive.

• • • • • • • • • • •

Theorem (Jarrah et al., 2010)

Let f be a conjunctive network. Then, f has no limit cycle with parallel update schedule if and only if either G(f) is primitive or G(f) has no cycles.

Corollary

LCE problem can be solved in polynomial time when s is the parallel update schedule.

- LCE is NP-hard where f is an AND-OR network (Gómez, 2015)
- What happens if s is any block-sequential update schedule?

(日) (四) (日) (日) (日)

Given a interaction graph G and a block-sequential schedule s, the update digraph (G, s) is a digraph with a labeling function lab_s :

$$\begin{aligned} \operatorname{lab}_{s} : A(G) \to \{\oplus, \ominus\} \\ \operatorname{lab}_{s}(u, v) &= \oplus \iff u \in B_{i} \land v \in B_{j} \land i \ge j \\ \\ s_{1} &= \{1, 2, 3, 4\} \qquad s_{2} = \{2\} \{3\} \{4\} \{1\} \qquad s_{3} = \{3, 4\} \{1\} \{2\} \\ \\ s_{4} &= \{4\} \{1\} \{3, 2\} \end{aligned}$$

< □ > < 同 >

Aracena et al., 2009, 2011.

G

The *parallel digraph* is a digraph that represent the real dependence of the components of the Boolean network, according with the block-sequential schedule s.

イロト イヨト イヨト イ

Can be obtained from the labeled digraph. $\forall (u,v) \in V(G) \times V(G), (u,v) \in A(\mathcal{P}(G,s)) \text{ if and only if:}$

ullet either (u,v) is labeled \oplus or

• $\exists w \in V(G), (u, w)$ is labeled \oplus and there exists a path from w to v labeled \ominus .

$$\begin{split} s &= \{2\} \, \{3\} \, \{4\} \, \{1\} \\ &\quad (G(f),s) \qquad \qquad \mathcal{P}(G(f),s) = G(f^s) \end{split}$$

<ロト < 回 > < 回 > < 回 > < 回 >

Can be obtained from the labeled digraph. $\forall (u,v) \in V(G) \times V(G), (u,v) \in A(\mathcal{P}(G,s)) \text{ if and only if:}$

ullet either (u,v) is labeled \oplus or

• $\exists w \in V(G), (u, w)$ is labeled \oplus and there exists a path from w to v labeled \ominus .

$$\begin{split} s &= \{2\} \, \{3\} \, \{4\} \, \{1\} \\ & (G(f),s) \qquad \qquad \mathcal{P}(G(f),s) = G(f^s) \end{split}$$

イロト イヨト イヨト イヨ

Can be obtained from the labeled digraph. $\forall (u,v) \in V(G) \times V(G), (u,v) \in A(\mathcal{P}(G,s)) \text{ if and only if:}$

ullet either (u,v) is labeled \oplus or

• $\exists w \in V(G), (u, w)$ is labeled \oplus and there exists a path from w to v labeled \ominus .

$$s = \{2\} \{3\} \{4\} \{1\}$$

$$(G(f), s) \qquad \qquad \mathcal{P}(G(f), s) = G(f^s)$$

イロト イヨト イヨト イヨ

Lema

Let f be a conjunctive network with G(f) strongly connected and s a block-sequential schedule. Then, $i(G(f^s)) = k > 1$ if and only if each cycle of (G(f), s) has a multiple of $k \oplus$ -labeled arcs.

イロト イヨト イヨト イヨト

Lema

Let f be a conjunctive network with G(f) strongly connected. Then, there exists a block-sequential s such that $i(G(f^s))$ is no primitive if and only if each cycle of (G(f), s) has an even number of \oplus -labeled arcs.

 ${\mathcal P}(G,s)$ and (G,s) ordered according to $V_1^{'}$ and $V_2^{'}.$

Theorem

LCE problem is NP-hard.

Proof (Idea)

Corollary

LCE is NP-hard with sequential update schedules.

Corollary

LCE is NP-hard even considering only limit cycles of constant length.

- Aracena, J., Fanchon, E., Montalva, M., Noual, M., 2011. Combinatorics on update digraphs in Boolean networks. Discrete Applied Mathematics 159, 401-409.
- Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009. On the robustness of update schedules in Boolean networks. Biosystems 97, 1-8.
- Jacques Demongeot, Adrien Elena, and Sylvain Sené. Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheoretica, 56(1-2):27-49, 2008.
- Goles, E., Noual, M., 2012. Disjunctive networks and update schedules. Advances in Applied Mathematics 48, 646-662.
- Gómez, L. Dynamics of discrete networks with deterministic updates schedules. Application to genetic regulatory networks. Ph.D. thesis in mathematical engineering, Universidad de Concepción, Concepción, Chile, 2015.
- Jarrah, A.S., Laubenbacher, R., Veliz-Cuba, A., 2010. The dynamics of conjunctive and disjunctiveBoolean networks. Bulletin of Mathematical Biology 72, 1425-1447.
- Macauley, M., Mortveit, H.S., 2009. Cycle equivalence of graph dynamical systems. Nonlinearity 22(2):421, 2009.
- Robert, F. Discrete iterations: a metric study, volume 6 of Series in Computational Mathematics. Springer, 1986.

Thank you!

WAN, 2021 19 / 19